Solve for r (complex solution)
\left\{\begin{matrix}r=\frac{y}{9a\left(0.3^{\pi }-\pi a\right)}\text{, }&a\neq 0\text{ and }a\neq \frac{0.3^{\pi }}{\pi }\\r\in \mathrm{C}\text{, }&a=\frac{0.3^{\pi }}{\pi }\text{ and }y=0\end{matrix}\right.
Solve for r
\left\{\begin{matrix}r=\frac{10^{\pi }y}{9a\left(3^{\pi }-\pi \times 10^{\pi }a\right)}\text{, }&a\neq 0\text{ and }a\neq \frac{0.3^{\pi }}{\pi }\\r\in \mathrm{R}\text{, }&a=\frac{0.3^{\pi }}{\pi }\text{ and }y=0\end{matrix}\right.
Solve for a (complex solution)
\left\{\begin{matrix}\\a\neq 0\text{, }&\text{unconditionally}\\a=\frac{\sqrt{r\left(9\times 0.09^{\pi }r-4\pi y\right)}+3\times 0.3^{\pi }r}{6\pi r}\text{, }&\left(|\frac{arg(r^{2})}{2}-arg(-r)|\geq \pi \text{ or }y\neq 0\right)\text{ and }r\neq 0\\a=-\frac{\sqrt{r\left(9\times 0.09^{\pi }r-4\pi y\right)}-3\times 0.3^{\pi }r}{6\pi r}\text{, }&\left(|\frac{arg(r^{2})}{2}-arg(r)|\geq \pi \text{ or }y\neq 0\right)\text{ and }r\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a\neq 0\text{, }&\text{unconditionally}\\a=\frac{\sqrt{r\left(9\times 0.09^{\pi }r-4\pi y\right)}+3\times 0.3^{\pi }r}{6\pi r}\text{, }&\left(y\neq 0\text{ and }r\leq \frac{4\pi \times \frac{100}{9}^{\pi }y}{9}\text{ and }r<0\right)\text{ or }\left(r=\frac{4\pi \times \frac{100}{9}^{\pi }y}{9}\text{ and }y\neq 0\right)\text{ or }\left(r>0\text{ and }r\geq \frac{4\pi \times \frac{100}{9}^{\pi }y}{9}\right)\\a=-\frac{\sqrt{r\left(9\times 0.09^{\pi }r-4\pi y\right)}-3\times 0.3^{\pi }r}{6\pi r}\text{, }&\left(y\neq 0\text{ and }r\geq \frac{4\pi \times \frac{100}{9}^{\pi }y}{9}\text{ and }r>0\right)\text{ or }\left(r=\frac{4\pi \times \frac{100}{9}^{\pi }y}{9}\text{ and }y\neq 0\right)\text{ or }\left(r<0\text{ and }r\leq \frac{4\pi \times \frac{100}{9}^{\pi }y}{9}\right)\end{matrix}\right.
Quiz
Algebra
5 problems similar to:
r ( a ^ { 2 } ) 9 \times ( \frac { 0.3 ^ { \pi } } { a } - \pi ) = y
Share
Copied to clipboard
ra^{2}\times 9\left(\frac{0.3^{\pi }}{a}-\pi \right)a=ya
Multiply both sides of the equation by a.
ra^{3}\times 9\left(\frac{0.3^{\pi }}{a}-\pi \right)=ya
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
9ra^{3}\times \frac{0.3^{\pi }}{a}-9ra^{3}\pi =ya
Use the distributive property to multiply ra^{3}\times 9 by \frac{0.3^{\pi }}{a}-\pi .
9ra^{3}\times 0.3^{\pi }-9ra^{3}\pi a=yaa
Multiply both sides of the equation by a.
9ra^{3}\times 0.3^{\pi }-9ra^{4}\pi =yaa
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
9ra^{3}\times 0.3^{\pi }-9ra^{4}\pi =ya^{2}
Multiply a and a to get a^{2}.
\left(9a^{3}\times 0.3^{\pi }-9a^{4}\pi \right)r=ya^{2}
Combine all terms containing r.
\left(9\times 0.3^{\pi }a^{3}-9\pi a^{4}\right)r=ya^{2}
The equation is in standard form.
\frac{\left(9\times 0.3^{\pi }a^{3}-9\pi a^{4}\right)r}{9\times 0.3^{\pi }a^{3}-9\pi a^{4}}=\frac{ya^{2}}{9\times 0.3^{\pi }a^{3}-9\pi a^{4}}
Divide both sides by 9a^{3}\times 0.3^{\pi }-9a^{4}\pi .
r=\frac{ya^{2}}{9\times 0.3^{\pi }a^{3}-9\pi a^{4}}
Dividing by 9a^{3}\times 0.3^{\pi }-9a^{4}\pi undoes the multiplication by 9a^{3}\times 0.3^{\pi }-9a^{4}\pi .
r=\frac{y}{9a\left(0.3^{\pi }-\pi a\right)}
Divide ya^{2} by 9a^{3}\times 0.3^{\pi }-9a^{4}\pi .
ra^{2}\times 9\left(\frac{0.3^{\pi }}{a}-\pi \right)a=ya
Multiply both sides of the equation by a.
ra^{3}\times 9\left(\frac{0.3^{\pi }}{a}-\pi \right)=ya
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
9ra^{3}\times \frac{0.3^{\pi }}{a}-9ra^{3}\pi =ya
Use the distributive property to multiply ra^{3}\times 9 by \frac{0.3^{\pi }}{a}-\pi .
9ra^{3}\times 0.3^{\pi }-9ra^{3}\pi a=yaa
Multiply both sides of the equation by a.
9ra^{3}\times 0.3^{\pi }-9ra^{4}\pi =yaa
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
9ra^{3}\times 0.3^{\pi }-9ra^{4}\pi =ya^{2}
Multiply a and a to get a^{2}.
\left(9a^{3}\times 0.3^{\pi }-9a^{4}\pi \right)r=ya^{2}
Combine all terms containing r.
\left(9\times 0.3^{\pi }a^{3}-9\pi a^{4}\right)r=ya^{2}
The equation is in standard form.
\frac{\left(9\times 0.3^{\pi }a^{3}-9\pi a^{4}\right)r}{9\times 0.3^{\pi }a^{3}-9\pi a^{4}}=\frac{ya^{2}}{9\times 0.3^{\pi }a^{3}-9\pi a^{4}}
Divide both sides by 9a^{3}\times 0.3^{\pi }-9a^{4}\pi .
r=\frac{ya^{2}}{9\times 0.3^{\pi }a^{3}-9\pi a^{4}}
Dividing by 9a^{3}\times 0.3^{\pi }-9a^{4}\pi undoes the multiplication by 9a^{3}\times 0.3^{\pi }-9a^{4}\pi .
r=\frac{10^{\pi }y}{9a\left(3^{\pi }-\pi \times 10^{\pi }a\right)}
Divide ya^{2} by 9a^{3}\times 0.3^{\pi }-9a^{4}\pi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}