Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

r^{2}=0.6889
Calculate -0.83 to the power of 2 and get 0.6889.
r^{2}-0.6889=0
Subtract 0.6889 from both sides.
\left(r-\frac{83}{100}\right)\left(r+\frac{83}{100}\right)=0
Consider r^{2}-0.6889. Rewrite r^{2}-0.6889 as r^{2}-\left(\frac{83}{100}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
r=0.83 r=-0.83
To find equation solutions, solve r-\frac{83}{100}=0 and r+\frac{83}{100}=0.
r^{2}=0.6889
Calculate -0.83 to the power of 2 and get 0.6889.
r=\frac{83}{100} r=-\frac{83}{100}
Take the square root of both sides of the equation.
r^{2}=0.6889
Calculate -0.83 to the power of 2 and get 0.6889.
r^{2}-0.6889=0
Subtract 0.6889 from both sides.
r=\frac{0±\sqrt{0^{2}-4\left(-0.6889\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -0.6889 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-0.6889\right)}}{2}
Square 0.
r=\frac{0±\sqrt{2.7556}}{2}
Multiply -4 times -0.6889.
r=\frac{0±\frac{83}{50}}{2}
Take the square root of 2.7556.
r=\frac{83}{100}
Now solve the equation r=\frac{0±\frac{83}{50}}{2} when ± is plus.
r=-\frac{83}{100}
Now solve the equation r=\frac{0±\frac{83}{50}}{2} when ± is minus.
r=\frac{83}{100} r=-\frac{83}{100}
The equation is now solved.