Solve for x
x=\frac{r^{2}+1}{r^{2}-1}
|r|\neq 1
Solve for r
r=\sqrt{\frac{x+1}{x-1}}
r=-\sqrt{\frac{x+1}{x-1}}\text{, }x>1\text{ or }x\leq -1
Share
Copied to clipboard
\left(x-1\right)r^{2}=x+1
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1.
xr^{2}-r^{2}=x+1
Use the distributive property to multiply x-1 by r^{2}.
xr^{2}-r^{2}-x=1
Subtract x from both sides.
xr^{2}-x=1+r^{2}
Add r^{2} to both sides.
\left(r^{2}-1\right)x=1+r^{2}
Combine all terms containing x.
\left(r^{2}-1\right)x=r^{2}+1
The equation is in standard form.
\frac{\left(r^{2}-1\right)x}{r^{2}-1}=\frac{r^{2}+1}{r^{2}-1}
Divide both sides by r^{2}-1.
x=\frac{r^{2}+1}{r^{2}-1}
Dividing by r^{2}-1 undoes the multiplication by r^{2}-1.
x=\frac{r^{2}+1}{r^{2}-1}\text{, }x\neq 1
Variable x cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}