Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

r^{2}=\frac{500000}{314}
Expand \frac{5000}{3.14} by multiplying both numerator and the denominator by 100.
r^{2}=\frac{250000}{157}
Reduce the fraction \frac{500000}{314} to lowest terms by extracting and canceling out 2.
r=\frac{500\sqrt{157}}{157} r=-\frac{500\sqrt{157}}{157}
Take the square root of both sides of the equation.
r^{2}=\frac{500000}{314}
Expand \frac{5000}{3.14} by multiplying both numerator and the denominator by 100.
r^{2}=\frac{250000}{157}
Reduce the fraction \frac{500000}{314} to lowest terms by extracting and canceling out 2.
r^{2}-\frac{250000}{157}=0
Subtract \frac{250000}{157} from both sides.
r=\frac{0±\sqrt{0^{2}-4\left(-\frac{250000}{157}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{250000}{157} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-\frac{250000}{157}\right)}}{2}
Square 0.
r=\frac{0±\sqrt{\frac{1000000}{157}}}{2}
Multiply -4 times -\frac{250000}{157}.
r=\frac{0±\frac{1000\sqrt{157}}{157}}{2}
Take the square root of \frac{1000000}{157}.
r=\frac{500\sqrt{157}}{157}
Now solve the equation r=\frac{0±\frac{1000\sqrt{157}}{157}}{2} when ± is plus.
r=-\frac{500\sqrt{157}}{157}
Now solve the equation r=\frac{0±\frac{1000\sqrt{157}}{157}}{2} when ± is minus.
r=\frac{500\sqrt{157}}{157} r=-\frac{500\sqrt{157}}{157}
The equation is now solved.