Solve for r
r=-4
r=1
Share
Copied to clipboard
a+b=3 ab=-4
To solve the equation, factor r^{2}+3r-4 using formula r^{2}+\left(a+b\right)r+ab=\left(r+a\right)\left(r+b\right). To find a and b, set up a system to be solved.
-1,4 -2,2
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -4.
-1+4=3 -2+2=0
Calculate the sum for each pair.
a=-1 b=4
The solution is the pair that gives sum 3.
\left(r-1\right)\left(r+4\right)
Rewrite factored expression \left(r+a\right)\left(r+b\right) using the obtained values.
r=1 r=-4
To find equation solutions, solve r-1=0 and r+4=0.
a+b=3 ab=1\left(-4\right)=-4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as r^{2}+ar+br-4. To find a and b, set up a system to be solved.
-1,4 -2,2
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -4.
-1+4=3 -2+2=0
Calculate the sum for each pair.
a=-1 b=4
The solution is the pair that gives sum 3.
\left(r^{2}-r\right)+\left(4r-4\right)
Rewrite r^{2}+3r-4 as \left(r^{2}-r\right)+\left(4r-4\right).
r\left(r-1\right)+4\left(r-1\right)
Factor out r in the first and 4 in the second group.
\left(r-1\right)\left(r+4\right)
Factor out common term r-1 by using distributive property.
r=1 r=-4
To find equation solutions, solve r-1=0 and r+4=0.
r^{2}+3r-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-3±\sqrt{3^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-3±\sqrt{9-4\left(-4\right)}}{2}
Square 3.
r=\frac{-3±\sqrt{9+16}}{2}
Multiply -4 times -4.
r=\frac{-3±\sqrt{25}}{2}
Add 9 to 16.
r=\frac{-3±5}{2}
Take the square root of 25.
r=\frac{2}{2}
Now solve the equation r=\frac{-3±5}{2} when ± is plus. Add -3 to 5.
r=1
Divide 2 by 2.
r=-\frac{8}{2}
Now solve the equation r=\frac{-3±5}{2} when ± is minus. Subtract 5 from -3.
r=-4
Divide -8 by 2.
r=1 r=-4
The equation is now solved.
r^{2}+3r-4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
r^{2}+3r-4-\left(-4\right)=-\left(-4\right)
Add 4 to both sides of the equation.
r^{2}+3r=-\left(-4\right)
Subtracting -4 from itself leaves 0.
r^{2}+3r=4
Subtract -4 from 0.
r^{2}+3r+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+3r+\frac{9}{4}=4+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
r^{2}+3r+\frac{9}{4}=\frac{25}{4}
Add 4 to \frac{9}{4}.
\left(r+\frac{3}{2}\right)^{2}=\frac{25}{4}
Factor r^{2}+3r+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
r+\frac{3}{2}=\frac{5}{2} r+\frac{3}{2}=-\frac{5}{2}
Simplify.
r=1 r=-4
Subtract \frac{3}{2} from both sides of the equation.
x ^ 2 +3x -4 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -3 rs = -4
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{3}{2} - u s = -\frac{3}{2} + u
Two numbers r and s sum up to -3 exactly when the average of the two numbers is \frac{1}{2}*-3 = -\frac{3}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{3}{2} - u) (-\frac{3}{2} + u) = -4
To solve for unknown quantity u, substitute these in the product equation rs = -4
\frac{9}{4} - u^2 = -4
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -4-\frac{9}{4} = -\frac{25}{4}
Simplify the expression by subtracting \frac{9}{4} on both sides
u^2 = \frac{25}{4} u = \pm\sqrt{\frac{25}{4}} = \pm \frac{5}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{3}{2} - \frac{5}{2} = -4 s = -\frac{3}{2} + \frac{5}{2} = 1
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}