Solve for r
r=50000000000000000\sqrt{1235414401}-297550000000000000000\approx 1.459873114 \cdot 10^{21}
r=-50000000000000000\sqrt{1235414401}-297550000000000000000\approx -2.054973114 \cdot 10^{21}
Share
Copied to clipboard
r^{2}+5.951\times 100000000000000000000r-3\times 10^{42}=0
Calculate 10 to the power of 20 and get 100000000000000000000.
r^{2}+595100000000000000000r-3\times 10^{42}=0
Multiply 5.951 and 100000000000000000000 to get 595100000000000000000.
r^{2}+595100000000000000000r-3\times 1000000000000000000000000000000000000000000=0
Calculate 10 to the power of 42 and get 1000000000000000000000000000000000000000000.
r^{2}+595100000000000000000r-3000000000000000000000000000000000000000000=0
Multiply 3 and 1000000000000000000000000000000000000000000 to get 3000000000000000000000000000000000000000000.
r=\frac{-595100000000000000000±\sqrt{595100000000000000000^{2}-4\left(-3000000000000000000000000000000000000000000\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 595100000000000000000 for b, and -3000000000000000000000000000000000000000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-595100000000000000000±\sqrt{354144010000000000000000000000000000000000-4\left(-3000000000000000000000000000000000000000000\right)}}{2}
Square 595100000000000000000.
r=\frac{-595100000000000000000±\sqrt{354144010000000000000000000000000000000000+12000000000000000000000000000000000000000000}}{2}
Multiply -4 times -3000000000000000000000000000000000000000000.
r=\frac{-595100000000000000000±\sqrt{12354144010000000000000000000000000000000000}}{2}
Add 354144010000000000000000000000000000000000 to 12000000000000000000000000000000000000000000.
r=\frac{-595100000000000000000±100000000000000000\sqrt{1235414401}}{2}
Take the square root of 12354144010000000000000000000000000000000000.
r=\frac{100000000000000000\sqrt{1235414401}-595100000000000000000}{2}
Now solve the equation r=\frac{-595100000000000000000±100000000000000000\sqrt{1235414401}}{2} when ± is plus. Add -595100000000000000000 to 100000000000000000\sqrt{1235414401}.
r=50000000000000000\sqrt{1235414401}-297550000000000000000
Divide -595100000000000000000+100000000000000000\sqrt{1235414401} by 2.
r=\frac{-100000000000000000\sqrt{1235414401}-595100000000000000000}{2}
Now solve the equation r=\frac{-595100000000000000000±100000000000000000\sqrt{1235414401}}{2} when ± is minus. Subtract 100000000000000000\sqrt{1235414401} from -595100000000000000000.
r=-50000000000000000\sqrt{1235414401}-297550000000000000000
Divide -595100000000000000000-100000000000000000\sqrt{1235414401} by 2.
r=50000000000000000\sqrt{1235414401}-297550000000000000000 r=-50000000000000000\sqrt{1235414401}-297550000000000000000
The equation is now solved.
r^{2}+5.951\times 100000000000000000000r-3\times 10^{42}=0
Calculate 10 to the power of 20 and get 100000000000000000000.
r^{2}+595100000000000000000r-3\times 10^{42}=0
Multiply 5.951 and 100000000000000000000 to get 595100000000000000000.
r^{2}+595100000000000000000r-3\times 1000000000000000000000000000000000000000000=0
Calculate 10 to the power of 42 and get 1000000000000000000000000000000000000000000.
r^{2}+595100000000000000000r-3000000000000000000000000000000000000000000=0
Multiply 3 and 1000000000000000000000000000000000000000000 to get 3000000000000000000000000000000000000000000.
r^{2}+595100000000000000000r=3000000000000000000000000000000000000000000
Add 3000000000000000000000000000000000000000000 to both sides. Anything plus zero gives itself.
r^{2}+595100000000000000000r+297550000000000000000^{2}=3000000000000000000000000000000000000000000+297550000000000000000^{2}
Divide 595100000000000000000, the coefficient of the x term, by 2 to get 297550000000000000000. Then add the square of 297550000000000000000 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+595100000000000000000r+88536002500000000000000000000000000000000=3000000000000000000000000000000000000000000+88536002500000000000000000000000000000000
Square 297550000000000000000.
r^{2}+595100000000000000000r+88536002500000000000000000000000000000000=3088536002500000000000000000000000000000000
Add 3000000000000000000000000000000000000000000 to 88536002500000000000000000000000000000000.
\left(r+297550000000000000000\right)^{2}=3088536002500000000000000000000000000000000
Factor r^{2}+595100000000000000000r+88536002500000000000000000000000000000000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+297550000000000000000\right)^{2}}=\sqrt{3088536002500000000000000000000000000000000}
Take the square root of both sides of the equation.
r+297550000000000000000=50000000000000000\sqrt{1235414401} r+297550000000000000000=-50000000000000000\sqrt{1235414401}
Simplify.
r=50000000000000000\sqrt{1235414401}-297550000000000000000 r=-50000000000000000\sqrt{1235414401}-297550000000000000000
Subtract 297550000000000000000 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}