Solve for j
\left\{\begin{matrix}j=\frac{k+it^{2}-r}{t^{2}}\text{, }&t\neq 0\\j\in \mathrm{C}\text{, }&r=k\text{ and }t=0\end{matrix}\right.
Solve for k
k=r+jt^{2}-it^{2}
Share
Copied to clipboard
t^{2}i-t^{2}j+k=r
Swap sides so that all variable terms are on the left hand side.
t^{2}i-t^{2}j=r-k
Subtract k from both sides.
-t^{2}j=r-k-t^{2}i
Subtract t^{2}i from both sides.
\left(-t^{2}\right)j=r-it^{2}-k
The equation is in standard form.
\frac{\left(-t^{2}\right)j}{-t^{2}}=\frac{r-it^{2}-k}{-t^{2}}
Divide both sides by -t^{2}.
j=\frac{r-it^{2}-k}{-t^{2}}
Dividing by -t^{2} undoes the multiplication by -t^{2}.
j=-\frac{r-it^{2}-k}{t^{2}}
Divide r-k-it^{2} by -t^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}