Solve for a
a=\frac{r-6b}{6}
Solve for b
b=\frac{r-6a}{6}
Graph
Share
Copied to clipboard
r=6b+6a
Use the distributive property to multiply 6 by b+a.
6b+6a=r
Swap sides so that all variable terms are on the left hand side.
6a=r-6b
Subtract 6b from both sides.
\frac{6a}{6}=\frac{r-6b}{6}
Divide both sides by 6.
a=\frac{r-6b}{6}
Dividing by 6 undoes the multiplication by 6.
a=\frac{r}{6}-b
Divide r-6b by 6.
r=6b+6a
Use the distributive property to multiply 6 by b+a.
6b+6a=r
Swap sides so that all variable terms are on the left hand side.
6b=r-6a
Subtract 6a from both sides.
\frac{6b}{6}=\frac{r-6a}{6}
Divide both sides by 6.
b=\frac{r-6a}{6}
Dividing by 6 undoes the multiplication by 6.
b=\frac{r}{6}-a
Divide r-6a by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}