Solve for r
r=\frac{A^{2}+4}{4}
Solve for A
A=2\sqrt{r-1}
A=-2\sqrt{r-1}\text{, }r\geq 1
Share
Copied to clipboard
r^{2}=\left(\sqrt{\left(r-2\right)^{2}+A^{2}}\right)^{2}
Square both sides of the equation.
r^{2}=\left(\sqrt{r^{2}-4r+4+A^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(r-2\right)^{2}.
r^{2}=r^{2}-4r+4+A^{2}
Calculate \sqrt{r^{2}-4r+4+A^{2}} to the power of 2 and get r^{2}-4r+4+A^{2}.
r^{2}-r^{2}=-4r+4+A^{2}
Subtract r^{2} from both sides.
0=-4r+4+A^{2}
Combine r^{2} and -r^{2} to get 0.
-4r+4+A^{2}=0
Swap sides so that all variable terms are on the left hand side.
-4r+A^{2}=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
-4r=-4-A^{2}
Subtract A^{2} from both sides.
-4r=-A^{2}-4
The equation is in standard form.
\frac{-4r}{-4}=\frac{-A^{2}-4}{-4}
Divide both sides by -4.
r=\frac{-A^{2}-4}{-4}
Dividing by -4 undoes the multiplication by -4.
r=\frac{A^{2}}{4}+1
Divide -4-A^{2} by -4.
\frac{A^{2}}{4}+1=\sqrt{\left(\frac{A^{2}}{4}+1-2\right)^{2}+A^{2}}
Substitute \frac{A^{2}}{4}+1 for r in the equation r=\sqrt{\left(r-2\right)^{2}+A^{2}}.
\frac{1}{4}A^{2}+1=\frac{1}{4}\left(16+8A^{2}+A^{4}\right)^{\frac{1}{2}}
Simplify. The value r=\frac{A^{2}}{4}+1 satisfies the equation.
r=\frac{A^{2}}{4}+1
Equation r=\sqrt{\left(r-2\right)^{2}+A^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}