Skip to main content
Solve for r
Tick mark Image
Solve for A
Tick mark Image

Similar Problems from Web Search

Share

r^{2}=\left(\sqrt{\left(r-2\right)^{2}+A^{2}}\right)^{2}
Square both sides of the equation.
r^{2}=\left(\sqrt{r^{2}-4r+4+A^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(r-2\right)^{2}.
r^{2}=r^{2}-4r+4+A^{2}
Calculate \sqrt{r^{2}-4r+4+A^{2}} to the power of 2 and get r^{2}-4r+4+A^{2}.
r^{2}-r^{2}=-4r+4+A^{2}
Subtract r^{2} from both sides.
0=-4r+4+A^{2}
Combine r^{2} and -r^{2} to get 0.
-4r+4+A^{2}=0
Swap sides so that all variable terms are on the left hand side.
-4r+A^{2}=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
-4r=-4-A^{2}
Subtract A^{2} from both sides.
-4r=-A^{2}-4
The equation is in standard form.
\frac{-4r}{-4}=\frac{-A^{2}-4}{-4}
Divide both sides by -4.
r=\frac{-A^{2}-4}{-4}
Dividing by -4 undoes the multiplication by -4.
r=\frac{A^{2}}{4}+1
Divide -4-A^{2} by -4.
\frac{A^{2}}{4}+1=\sqrt{\left(\frac{A^{2}}{4}+1-2\right)^{2}+A^{2}}
Substitute \frac{A^{2}}{4}+1 for r in the equation r=\sqrt{\left(r-2\right)^{2}+A^{2}}.
\frac{1}{4}A^{2}+1=\frac{1}{4}\left(16+8A^{2}+A^{4}\right)^{\frac{1}{2}}
Simplify. The value r=\frac{A^{2}}{4}+1 satisfies the equation.
r=\frac{A^{2}}{4}+1
Equation r=\sqrt{\left(r-2\right)^{2}+A^{2}} has a unique solution.