r = \sqrt { ( 1,5 ) ^ { 2 } + ( - 2 ) ^ { 2 } - C }
Solve for C
C=6,25-r^{2}
r\geq 0
Solve for r
r=\sqrt{6,25-C}
C\leq 6,25
Graph
Share
Copied to clipboard
r=\sqrt{2,25+\left(-2\right)^{2}-C}
Calculate 1,5 to the power of 2 and get 2,25.
r=\sqrt{2,25+4-C}
Calculate -2 to the power of 2 and get 4.
r=\sqrt{6,25-C}
Add 2,25 and 4 to get 6,25.
\sqrt{6,25-C}=r
Swap sides so that all variable terms are on the left hand side.
-C+6,25=r^{2}
Square both sides of the equation.
-C+6,25-6,25=r^{2}-6,25
Subtract 6,25 from both sides of the equation.
-C=r^{2}-6,25
Subtracting 6,25 from itself leaves 0.
-C=r^{2}-\frac{25}{4}
Subtract 6,25 from r^{2}.
\frac{-C}{-1}=\frac{r^{2}-\frac{25}{4}}{-1}
Divide both sides by -1.
C=\frac{r^{2}-\frac{25}{4}}{-1}
Dividing by -1 undoes the multiplication by -1.
C=\frac{25}{4}-r^{2}
Divide r^{2}-\frac{25}{4} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}