Solve for p
p=\frac{3r-2}{r+4}
r\neq -4
Solve for r
r=\frac{2\left(2p+1\right)}{3-p}
p\neq 3
Graph
Share
Copied to clipboard
r\left(-p+3\right)=4p+2
Variable p cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by -p+3.
-rp+3r=4p+2
Use the distributive property to multiply r by -p+3.
-rp+3r-4p=2
Subtract 4p from both sides.
-rp-4p=2-3r
Subtract 3r from both sides.
\left(-r-4\right)p=2-3r
Combine all terms containing p.
\frac{\left(-r-4\right)p}{-r-4}=\frac{2-3r}{-r-4}
Divide both sides by -r-4.
p=\frac{2-3r}{-r-4}
Dividing by -r-4 undoes the multiplication by -r-4.
p=-\frac{2-3r}{r+4}
Divide 2-3r by -r-4.
p=-\frac{2-3r}{r+4}\text{, }p\neq 3
Variable p cannot be equal to 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}