Solve for L
L=-\frac{10\left(r+1\right)}{r-1}
r\neq 1
Solve for r
r=-\frac{10-L}{L+10}
L\neq -10
Graph
Share
Copied to clipboard
r\times 2\left(L+10\right)=2L-20
Variable L cannot be equal to -10 since division by zero is not defined. Multiply both sides of the equation by 2\left(L+10\right).
2rL+10r\times 2=2L-20
Use the distributive property to multiply r\times 2 by L+10.
2rL+20r=2L-20
Multiply 10 and 2 to get 20.
2rL+20r-2L=-20
Subtract 2L from both sides.
2rL-2L=-20-20r
Subtract 20r from both sides.
\left(2r-2\right)L=-20-20r
Combine all terms containing L.
\left(2r-2\right)L=-20r-20
The equation is in standard form.
\frac{\left(2r-2\right)L}{2r-2}=\frac{-20r-20}{2r-2}
Divide both sides by 2r-2.
L=\frac{-20r-20}{2r-2}
Dividing by 2r-2 undoes the multiplication by 2r-2.
L=-\frac{10\left(r+1\right)}{r-1}
Divide -20-20r by 2r-2.
L=-\frac{10\left(r+1\right)}{r-1}\text{, }L\neq -10
Variable L cannot be equal to -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}