Skip to main content
Solve for r
Tick mark Image
Assign r
Tick mark Image
Graph

Similar Problems from Web Search

Share

r=\frac{5351340-2217\times 2489}{\sqrt{10\times 695135-2489^{2}}-\sqrt{10\times 607741-2217^{2}}}
Multiply 10 and 535134 to get 5351340.
r=\frac{5351340-5518113}{\sqrt{10\times 695135-2489^{2}}-\sqrt{10\times 607741-2217^{2}}}
Multiply 2217 and 2489 to get 5518113.
r=\frac{-166773}{\sqrt{10\times 695135-2489^{2}}-\sqrt{10\times 607741-2217^{2}}}
Subtract 5518113 from 5351340 to get -166773.
r=\frac{-166773}{\sqrt{6951350-2489^{2}}-\sqrt{10\times 607741-2217^{2}}}
Multiply 10 and 695135 to get 6951350.
r=\frac{-166773}{\sqrt{6951350-6195121}-\sqrt{10\times 607741-2217^{2}}}
Calculate 2489 to the power of 2 and get 6195121.
r=\frac{-166773}{\sqrt{756229}-\sqrt{10\times 607741-2217^{2}}}
Subtract 6195121 from 6951350 to get 756229.
r=\frac{-166773}{\sqrt{756229}-\sqrt{6077410-2217^{2}}}
Multiply 10 and 607741 to get 6077410.
r=\frac{-166773}{\sqrt{756229}-\sqrt{6077410-4915089}}
Calculate 2217 to the power of 2 and get 4915089.
r=\frac{-166773}{\sqrt{756229}-\sqrt{1162321}}
Subtract 4915089 from 6077410 to get 1162321.
r=\frac{-166773\left(\sqrt{756229}+\sqrt{1162321}\right)}{\left(\sqrt{756229}-\sqrt{1162321}\right)\left(\sqrt{756229}+\sqrt{1162321}\right)}
Rationalize the denominator of \frac{-166773}{\sqrt{756229}-\sqrt{1162321}} by multiplying numerator and denominator by \sqrt{756229}+\sqrt{1162321}.
r=\frac{-166773\left(\sqrt{756229}+\sqrt{1162321}\right)}{\left(\sqrt{756229}\right)^{2}-\left(\sqrt{1162321}\right)^{2}}
Consider \left(\sqrt{756229}-\sqrt{1162321}\right)\left(\sqrt{756229}+\sqrt{1162321}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
r=\frac{-166773\left(\sqrt{756229}+\sqrt{1162321}\right)}{756229-1162321}
Square \sqrt{756229}. Square \sqrt{1162321}.
r=\frac{-166773\left(\sqrt{756229}+\sqrt{1162321}\right)}{-406092}
Subtract 1162321 from 756229 to get -406092.
r=\frac{55591}{135364}\left(\sqrt{756229}+\sqrt{1162321}\right)
Divide -166773\left(\sqrt{756229}+\sqrt{1162321}\right) by -406092 to get \frac{55591}{135364}\left(\sqrt{756229}+\sqrt{1162321}\right).
r=\frac{55591}{135364}\sqrt{756229}+\frac{55591}{135364}\sqrt{1162321}
Use the distributive property to multiply \frac{55591}{135364} by \sqrt{756229}+\sqrt{1162321}.