Skip to main content
Solve for r
Tick mark Image
Assign r
Tick mark Image

Similar Problems from Web Search

Share

r=\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
r=\frac{\left(1+i\right)\left(1+i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
r=\frac{\left(1+i\right)\left(1+i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
r=\frac{1\times 1+i+i+i^{2}}{2}
Multiply complex numbers 1+i and 1+i like you multiply binomials.
r=\frac{1\times 1+i+i-1}{2}
By definition, i^{2} is -1.
r=\frac{1+i+i-1}{2}
Do the multiplications in 1\times 1+i+i-1.
r=\frac{1-1+\left(1+1\right)i}{2}
Combine the real and imaginary parts in 1+i+i-1.
r=\frac{2i}{2}
Do the additions in 1-1+\left(1+1\right)i.
r=i
Divide 2i by 2 to get i.