Solve for r
r=24-6x
Solve for x
x=-\frac{r}{6}+4
Share
Copied to clipboard
r+x-2=-3-5x+25
Use the distributive property to multiply -5 by x-5.
r+x-2=22-5x
Add -3 and 25 to get 22.
r-2=22-5x-x
Subtract x from both sides.
r-2=22-6x
Combine -5x and -x to get -6x.
r=22-6x+2
Add 2 to both sides.
r=24-6x
Add 22 and 2 to get 24.
r+x-2=-3-5x+25
Use the distributive property to multiply -5 by x-5.
r+x-2=22-5x
Add -3 and 25 to get 22.
r+x-2+5x=22
Add 5x to both sides.
r+6x-2=22
Combine x and 5x to get 6x.
6x-2=22-r
Subtract r from both sides.
6x=22-r+2
Add 2 to both sides.
6x=24-r
Add 22 and 2 to get 24.
\frac{6x}{6}=\frac{24-r}{6}
Divide both sides by 6.
x=\frac{24-r}{6}
Dividing by 6 undoes the multiplication by 6.
x=-\frac{r}{6}+4
Divide 24-r by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}