Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{r^{2}-36^{2}}=96-r
Subtract r from both sides of the equation.
\sqrt{r^{2}-1296}=96-r
Calculate 36 to the power of 2 and get 1296.
\left(\sqrt{r^{2}-1296}\right)^{2}=\left(96-r\right)^{2}
Square both sides of the equation.
r^{2}-1296=\left(96-r\right)^{2}
Calculate \sqrt{r^{2}-1296} to the power of 2 and get r^{2}-1296.
r^{2}-1296=9216-192r+r^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(96-r\right)^{2}.
r^{2}-1296+192r=9216+r^{2}
Add 192r to both sides.
r^{2}-1296+192r-r^{2}=9216
Subtract r^{2} from both sides.
-1296+192r=9216
Combine r^{2} and -r^{2} to get 0.
192r=9216+1296
Add 1296 to both sides.
192r=10512
Add 9216 and 1296 to get 10512.
r=\frac{10512}{192}
Divide both sides by 192.
r=\frac{219}{4}
Reduce the fraction \frac{10512}{192} to lowest terms by extracting and canceling out 48.
\frac{219}{4}+\sqrt{\left(\frac{219}{4}\right)^{2}-36^{2}}=96
Substitute \frac{219}{4} for r in the equation r+\sqrt{r^{2}-36^{2}}=96.
96=96
Simplify. The value r=\frac{219}{4} satisfies the equation.
r=\frac{219}{4}
Equation \sqrt{r^{2}-1296}=96-r has a unique solution.