Solve for r
r = \frac{219}{4} = 54\frac{3}{4} = 54.75
Share
Copied to clipboard
\sqrt{r^{2}-36^{2}}=96-r
Subtract r from both sides of the equation.
\sqrt{r^{2}-1296}=96-r
Calculate 36 to the power of 2 and get 1296.
\left(\sqrt{r^{2}-1296}\right)^{2}=\left(96-r\right)^{2}
Square both sides of the equation.
r^{2}-1296=\left(96-r\right)^{2}
Calculate \sqrt{r^{2}-1296} to the power of 2 and get r^{2}-1296.
r^{2}-1296=9216-192r+r^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(96-r\right)^{2}.
r^{2}-1296+192r=9216+r^{2}
Add 192r to both sides.
r^{2}-1296+192r-r^{2}=9216
Subtract r^{2} from both sides.
-1296+192r=9216
Combine r^{2} and -r^{2} to get 0.
192r=9216+1296
Add 1296 to both sides.
192r=10512
Add 9216 and 1296 to get 10512.
r=\frac{10512}{192}
Divide both sides by 192.
r=\frac{219}{4}
Reduce the fraction \frac{10512}{192} to lowest terms by extracting and canceling out 48.
\frac{219}{4}+\sqrt{\left(\frac{219}{4}\right)^{2}-36^{2}}=96
Substitute \frac{219}{4} for r in the equation r+\sqrt{r^{2}-36^{2}}=96.
96=96
Simplify. The value r=\frac{219}{4} satisfies the equation.
r=\frac{219}{4}
Equation \sqrt{r^{2}-1296}=96-r has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}