Factor
\left(q-7\right)\left(q-3\right)q^{2}
Evaluate
\left(q-7\right)\left(q-3\right)q^{2}
Share
Copied to clipboard
q^{2}\left(q^{2}-10q+21\right)
Factor out q^{2}.
a+b=-10 ab=1\times 21=21
Consider q^{2}-10q+21. Factor the expression by grouping. First, the expression needs to be rewritten as q^{2}+aq+bq+21. To find a and b, set up a system to be solved.
-1,-21 -3,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 21.
-1-21=-22 -3-7=-10
Calculate the sum for each pair.
a=-7 b=-3
The solution is the pair that gives sum -10.
\left(q^{2}-7q\right)+\left(-3q+21\right)
Rewrite q^{2}-10q+21 as \left(q^{2}-7q\right)+\left(-3q+21\right).
q\left(q-7\right)-3\left(q-7\right)
Factor out q in the first and -3 in the second group.
\left(q-7\right)\left(q-3\right)
Factor out common term q-7 by using distributive property.
q^{2}\left(q-7\right)\left(q-3\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}