Skip to main content
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

q^{2}-2q+\frac{1}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
q=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{1}{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and \frac{1}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{1}{2}}}{2}
Square -2.
q=\frac{-\left(-2\right)±\sqrt{4-2}}{2}
Multiply -4 times \frac{1}{2}.
q=\frac{-\left(-2\right)±\sqrt{2}}{2}
Add 4 to -2.
q=\frac{2±\sqrt{2}}{2}
The opposite of -2 is 2.
q=\frac{\sqrt{2}+2}{2}
Now solve the equation q=\frac{2±\sqrt{2}}{2} when ± is plus. Add 2 to \sqrt{2}.
q=\frac{\sqrt{2}}{2}+1
Divide 2+\sqrt{2} by 2.
q=\frac{2-\sqrt{2}}{2}
Now solve the equation q=\frac{2±\sqrt{2}}{2} when ± is minus. Subtract \sqrt{2} from 2.
q=-\frac{\sqrt{2}}{2}+1
Divide 2-\sqrt{2} by 2.
q=\frac{\sqrt{2}}{2}+1 q=-\frac{\sqrt{2}}{2}+1
The equation is now solved.
q^{2}-2q+\frac{1}{2}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
q^{2}-2q+\frac{1}{2}-\frac{1}{2}=-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
q^{2}-2q=-\frac{1}{2}
Subtracting \frac{1}{2} from itself leaves 0.
q^{2}-2q+1=-\frac{1}{2}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}-2q+1=\frac{1}{2}
Add -\frac{1}{2} to 1.
\left(q-1\right)^{2}=\frac{1}{2}
Factor q^{2}-2q+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-1\right)^{2}}=\sqrt{\frac{1}{2}}
Take the square root of both sides of the equation.
q-1=\frac{\sqrt{2}}{2} q-1=-\frac{\sqrt{2}}{2}
Simplify.
q=\frac{\sqrt{2}}{2}+1 q=-\frac{\sqrt{2}}{2}+1
Add 1 to both sides of the equation.