Skip to main content
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

q^{2}=\frac{9}{10}
Reduce the fraction \frac{32580}{36200} to lowest terms by extracting and canceling out 3620.
q=\frac{3\sqrt{10}}{10} q=-\frac{3\sqrt{10}}{10}
Take the square root of both sides of the equation.
q^{2}=\frac{9}{10}
Reduce the fraction \frac{32580}{36200} to lowest terms by extracting and canceling out 3620.
q^{2}-\frac{9}{10}=0
Subtract \frac{9}{10} from both sides.
q=\frac{0±\sqrt{0^{2}-4\left(-\frac{9}{10}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{9}{10} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{0±\sqrt{-4\left(-\frac{9}{10}\right)}}{2}
Square 0.
q=\frac{0±\sqrt{\frac{18}{5}}}{2}
Multiply -4 times -\frac{9}{10}.
q=\frac{0±\frac{3\sqrt{10}}{5}}{2}
Take the square root of \frac{18}{5}.
q=\frac{3\sqrt{10}}{10}
Now solve the equation q=\frac{0±\frac{3\sqrt{10}}{5}}{2} when ± is plus.
q=-\frac{3\sqrt{10}}{10}
Now solve the equation q=\frac{0±\frac{3\sqrt{10}}{5}}{2} when ± is minus.
q=\frac{3\sqrt{10}}{10} q=-\frac{3\sqrt{10}}{10}
The equation is now solved.