Solve for q
q=2
Share
Copied to clipboard
-q^{2}+4q+4=8
Combine q^{2} and -2q^{2} to get -q^{2}.
-q^{2}+4q+4-8=0
Subtract 8 from both sides.
-q^{2}+4q-4=0
Subtract 8 from 4 to get -4.
a+b=4 ab=-\left(-4\right)=4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -q^{2}+aq+bq-4. To find a and b, set up a system to be solved.
1,4 2,2
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 4.
1+4=5 2+2=4
Calculate the sum for each pair.
a=2 b=2
The solution is the pair that gives sum 4.
\left(-q^{2}+2q\right)+\left(2q-4\right)
Rewrite -q^{2}+4q-4 as \left(-q^{2}+2q\right)+\left(2q-4\right).
-q\left(q-2\right)+2\left(q-2\right)
Factor out -q in the first and 2 in the second group.
\left(q-2\right)\left(-q+2\right)
Factor out common term q-2 by using distributive property.
q=2 q=2
To find equation solutions, solve q-2=0 and -q+2=0.
-q^{2}+4q+4=8
Combine q^{2} and -2q^{2} to get -q^{2}.
-q^{2}+4q+4-8=0
Subtract 8 from both sides.
-q^{2}+4q-4=0
Subtract 8 from 4 to get -4.
q=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-4±\sqrt{16-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
Square 4.
q=\frac{-4±\sqrt{16+4\left(-4\right)}}{2\left(-1\right)}
Multiply -4 times -1.
q=\frac{-4±\sqrt{16-16}}{2\left(-1\right)}
Multiply 4 times -4.
q=\frac{-4±\sqrt{0}}{2\left(-1\right)}
Add 16 to -16.
q=-\frac{4}{2\left(-1\right)}
Take the square root of 0.
q=-\frac{4}{-2}
Multiply 2 times -1.
q=2
Divide -4 by -2.
-q^{2}+4q+4=8
Combine q^{2} and -2q^{2} to get -q^{2}.
-q^{2}+4q=8-4
Subtract 4 from both sides.
-q^{2}+4q=4
Subtract 4 from 8 to get 4.
\frac{-q^{2}+4q}{-1}=\frac{4}{-1}
Divide both sides by -1.
q^{2}+\frac{4}{-1}q=\frac{4}{-1}
Dividing by -1 undoes the multiplication by -1.
q^{2}-4q=\frac{4}{-1}
Divide 4 by -1.
q^{2}-4q=-4
Divide 4 by -1.
q^{2}-4q+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}-4q+4=-4+4
Square -2.
q^{2}-4q+4=0
Add -4 to 4.
\left(q-2\right)^{2}=0
Factor q^{2}-4q+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-2\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
q-2=0 q-2=0
Simplify.
q=2 q=2
Add 2 to both sides of the equation.
q=2
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}