Solve for k
\left\{\begin{matrix}k=\frac{py}{3q}\text{, }&p\neq 0\text{ and }y\neq 0\text{ and }q\neq 0\\k\neq 0\text{, }&\left(y=0\text{ or }p=0\right)\text{ and }q=0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=\frac{3kq}{y}\text{, }&y\neq 0\text{ and }k\neq 0\\p\in \mathrm{R}\text{, }&q=0\text{ and }y=0\text{ and }k\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
q\times 3k=yp
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3k.
3kq=py
Reorder the terms.
3qk=py
The equation is in standard form.
\frac{3qk}{3q}=\frac{py}{3q}
Divide both sides by 3q.
k=\frac{py}{3q}
Dividing by 3q undoes the multiplication by 3q.
k=\frac{py}{3q}\text{, }k\neq 0
Variable k cannot be equal to 0.
q\times 3k=yp
Multiply both sides of the equation by 3k.
yp=q\times 3k
Swap sides so that all variable terms are on the left hand side.
yp=3kq
The equation is in standard form.
\frac{yp}{y}=\frac{3kq}{y}
Divide both sides by y.
p=\frac{3kq}{y}
Dividing by y undoes the multiplication by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}