$q = \fraction{K (2) \exponential{(3)}{2}}{8} $

Solve for K

K=\frac{4q}{9}

Solve for q

q=\frac{9K}{4}

## Share

Copied to clipboard

q=\frac{K\times 2\times 9}{8}

Calculate 3 to the power of 2 and get 9.

q=\frac{K\times 18}{8}

Multiply 2 and 9 to get 18.

q=K\times \left(\frac{9}{4}\right)

Divide K\times 18 by 8 to get K\times \left(\frac{9}{4}\right).

K\times \left(\frac{9}{4}\right)=q

Swap sides so that all variable terms are on the left hand side.

\frac{9}{4}K=q

The equation is in standard form.

\frac{\frac{9}{4}K}{\frac{9}{4}}=\frac{q}{\frac{9}{4}}

Divide both sides of the equation by \frac{9}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.

K=\frac{q}{\frac{9}{4}}

Dividing by \frac{9}{4} undoes the multiplication by \frac{9}{4}.

K=\frac{4q}{9}

Divide q by \frac{9}{4} by multiplying q by the reciprocal of \frac{9}{4}.

q=\frac{K\times 2\times 9}{8}

Calculate 3 to the power of 2 and get 9.

q=\frac{K\times 18}{8}

Multiply 2 and 9 to get 18.

q=K\times \left(\frac{9}{4}\right)

Divide K\times 18 by 8 to get K\times \left(\frac{9}{4}\right).

## Examples

Quadratic equation

{ x } ^ { 2 } - 4 x - 5 = 0

Trigonometry

4 \sin \theta \cos \theta = 2 \sin \theta

Linear equation

y = 3x + 4

Arithmetic

699 * 533

Matrix

\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]

Simultaneous equation

\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.

Differentiation

\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }

Integration

\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x

Limits

\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}