Skip to main content
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

\left(q+2\right)^{2}=\left(2\sqrt{4q-7}\right)^{2}
Square both sides of the equation.
q^{2}+4q+4=\left(2\sqrt{4q-7}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(q+2\right)^{2}.
q^{2}+4q+4=2^{2}\left(\sqrt{4q-7}\right)^{2}
Expand \left(2\sqrt{4q-7}\right)^{2}.
q^{2}+4q+4=4\left(\sqrt{4q-7}\right)^{2}
Calculate 2 to the power of 2 and get 4.
q^{2}+4q+4=4\left(4q-7\right)
Calculate \sqrt{4q-7} to the power of 2 and get 4q-7.
q^{2}+4q+4=16q-28
Use the distributive property to multiply 4 by 4q-7.
q^{2}+4q+4-16q=-28
Subtract 16q from both sides.
q^{2}-12q+4=-28
Combine 4q and -16q to get -12q.
q^{2}-12q+4+28=0
Add 28 to both sides.
q^{2}-12q+32=0
Add 4 and 28 to get 32.
a+b=-12 ab=32
To solve the equation, factor q^{2}-12q+32 using formula q^{2}+\left(a+b\right)q+ab=\left(q+a\right)\left(q+b\right). To find a and b, set up a system to be solved.
-1,-32 -2,-16 -4,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 32.
-1-32=-33 -2-16=-18 -4-8=-12
Calculate the sum for each pair.
a=-8 b=-4
The solution is the pair that gives sum -12.
\left(q-8\right)\left(q-4\right)
Rewrite factored expression \left(q+a\right)\left(q+b\right) using the obtained values.
q=8 q=4
To find equation solutions, solve q-8=0 and q-4=0.
8+2=2\sqrt{4\times 8-7}
Substitute 8 for q in the equation q+2=2\sqrt{4q-7}.
10=10
Simplify. The value q=8 satisfies the equation.
4+2=2\sqrt{4\times 4-7}
Substitute 4 for q in the equation q+2=2\sqrt{4q-7}.
6=6
Simplify. The value q=4 satisfies the equation.
q=8 q=4
List all solutions of q+2=2\sqrt{4q-7}.