Solve for p (complex solution)
\left\{\begin{matrix}p=-\frac{-2x+3q-1}{x\left(x+1\right)}\text{, }&x\neq -1\text{ and }x\neq 0\\p\in \mathrm{C}\text{, }&\left(x=0\text{ and }q=\frac{1}{3}\right)\text{ or }\left(x=-1\text{ and }q=-\frac{1}{3}\right)\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=-\frac{-2x+3q-1}{x\left(x+1\right)}\text{, }&x\neq -1\text{ and }x\neq 0\\p\in \mathrm{R}\text{, }&\left(x=0\text{ and }q=\frac{1}{3}\right)\text{ or }\left(x=-1\text{ and }q=-\frac{1}{3}\right)\end{matrix}\right.
Solve for q
q=\frac{1+2x-px-px^{2}}{3}
Graph
Share
Copied to clipboard
px^{2}+px=1+2x-3q
Subtract 3q from both sides.
\left(x^{2}+x\right)p=1+2x-3q
Combine all terms containing p.
\left(x^{2}+x\right)p=2x-3q+1
The equation is in standard form.
\frac{\left(x^{2}+x\right)p}{x^{2}+x}=\frac{2x-3q+1}{x^{2}+x}
Divide both sides by x^{2}+x.
p=\frac{2x-3q+1}{x^{2}+x}
Dividing by x^{2}+x undoes the multiplication by x^{2}+x.
p=\frac{2x-3q+1}{x\left(x+1\right)}
Divide 1+2x-3q by x^{2}+x.
px^{2}+px=1+2x-3q
Subtract 3q from both sides.
\left(x^{2}+x\right)p=1+2x-3q
Combine all terms containing p.
\left(x^{2}+x\right)p=2x-3q+1
The equation is in standard form.
\frac{\left(x^{2}+x\right)p}{x^{2}+x}=\frac{2x-3q+1}{x^{2}+x}
Divide both sides by x^{2}+x.
p=\frac{2x-3q+1}{x^{2}+x}
Dividing by x^{2}+x undoes the multiplication by x^{2}+x.
p=\frac{2x-3q+1}{x\left(x+1\right)}
Divide 1+2x-3q by x^{2}+x.
px+3q=1+2x-px^{2}
Subtract px^{2} from both sides.
3q=1+2x-px^{2}-px
Subtract px from both sides.
3q=-px^{2}-px+2x+1
Reorder the terms.
3q=1+2x-px-px^{2}
The equation is in standard form.
\frac{3q}{3}=\frac{1+2x-px-px^{2}}{3}
Divide both sides by 3.
q=\frac{1+2x-px-px^{2}}{3}
Dividing by 3 undoes the multiplication by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}