Solve for m
m=2+\frac{5}{p}
p\neq 0
Solve for p
p=\frac{5}{m-2}
m\neq 2
Share
Copied to clipboard
pm=2p+5
Add 5 to both sides.
\frac{pm}{p}=\frac{2p+5}{p}
Divide both sides by p.
m=\frac{2p+5}{p}
Dividing by p undoes the multiplication by p.
m=2+\frac{5}{p}
Divide 2p+5 by p.
pm-5-2p=0
Subtract 2p from both sides.
pm-2p=5
Add 5 to both sides. Anything plus zero gives itself.
\left(m-2\right)p=5
Combine all terms containing p.
\frac{\left(m-2\right)p}{m-2}=\frac{5}{m-2}
Divide both sides by m-2.
p=\frac{5}{m-2}
Dividing by m-2 undoes the multiplication by m-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}