Solve for c (complex solution)
\left\{\begin{matrix}c=-\frac{5x^{3}-4x-1}{pxx_{1}}\text{, }&x\neq 0\text{ and }x_{1}\neq 0\text{ and }p\neq 0\\c\in \mathrm{C}\text{, }&\left(x=1\text{ and }x_{1}=0\right)\text{ or }\left(x=-\frac{\sqrt{5}}{10}-\frac{1}{2}\text{ and }x_{1}=0\right)\text{ or }\left(x=\frac{\sqrt{5}}{10}-\frac{1}{2}\text{ and }x_{1}=0\right)\text{ or }\left(p=0\text{ and }x_{1}\neq 0\text{ and }x=\frac{\sqrt{5}}{10}-\frac{1}{2}\right)\text{ or }\left(p=0\text{ and }x_{1}\neq 0\text{ and }x=-\frac{\sqrt{5}}{10}-\frac{1}{2}\right)\text{ or }\left(p=0\text{ and }x_{1}\neq 0\text{ and }x=1\right)\end{matrix}\right.
Solve for p (complex solution)
\left\{\begin{matrix}p=-\frac{5x^{3}-4x-1}{cxx_{1}}\text{, }&x\neq 0\text{ and }x_{1}\neq 0\text{ and }c\neq 0\\p\in \mathrm{C}\text{, }&\left(x=1\text{ and }x_{1}=0\right)\text{ or }\left(x=-\frac{\sqrt{5}}{10}-\frac{1}{2}\text{ and }x_{1}=0\right)\text{ or }\left(x=\frac{\sqrt{5}}{10}-\frac{1}{2}\text{ and }x_{1}=0\right)\text{ or }\left(c=0\text{ and }x_{1}\neq 0\text{ and }x=\frac{\sqrt{5}}{10}-\frac{1}{2}\right)\text{ or }\left(c=0\text{ and }x_{1}\neq 0\text{ and }x=-\frac{\sqrt{5}}{10}-\frac{1}{2}\right)\text{ or }\left(c=0\text{ and }x_{1}\neq 0\text{ and }x=1\right)\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=-\frac{5x^{3}-4x-1}{pxx_{1}}\text{, }&x\neq 0\text{ and }x_{1}\neq 0\text{ and }p\neq 0\\c\in \mathrm{R}\text{, }&\left(x=-\frac{\sqrt{5}}{10}-\frac{1}{2}\text{ and }x_{1}=0\right)\text{ or }\left(x=\frac{\sqrt{5}}{10}-\frac{1}{2}\text{ and }x_{1}=0\right)\text{ or }\left(x=1\text{ and }x_{1}=0\right)\text{ or }\left(p=0\text{ and }x_{1}\neq 0\text{ and }x=1\right)\text{ or }\left(p=0\text{ and }x_{1}\neq 0\text{ and }x=\frac{\sqrt{5}}{10}-\frac{1}{2}\right)\text{ or }\left(p=0\text{ and }x_{1}\neq 0\text{ and }x=-\frac{\sqrt{5}}{10}-\frac{1}{2}\right)\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=-\frac{5x^{3}-4x-1}{cxx_{1}}\text{, }&x\neq 0\text{ and }x_{1}\neq 0\text{ and }c\neq 0\\p\in \mathrm{R}\text{, }&\left(x=-\frac{\sqrt{5}}{10}-\frac{1}{2}\text{ and }x_{1}=0\right)\text{ or }\left(x=\frac{\sqrt{5}}{10}-\frac{1}{2}\text{ and }x_{1}=0\right)\text{ or }\left(x=1\text{ and }x_{1}=0\right)\text{ or }\left(c=0\text{ and }x_{1}\neq 0\text{ and }x=1\right)\text{ or }\left(c=0\text{ and }x_{1}\neq 0\text{ and }x=\frac{\sqrt{5}}{10}-\frac{1}{2}\right)\text{ or }\left(c=0\text{ and }x_{1}\neq 0\text{ and }x=-\frac{\sqrt{5}}{10}-\frac{1}{2}\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
cpx_{1}=-5x^{2}+4+\frac{1}{x}
Reorder the terms.
cpx_{1}x=-5x^{2}x+x\times 4+1
Multiply both sides of the equation by x.
cpx_{1}x=-5x^{3}+x\times 4+1
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
pxx_{1}c=1+4x-5x^{3}
The equation is in standard form.
\frac{pxx_{1}c}{pxx_{1}}=\frac{1+4x-5x^{3}}{pxx_{1}}
Divide both sides by px_{1}x.
c=\frac{1+4x-5x^{3}}{pxx_{1}}
Dividing by px_{1}x undoes the multiplication by px_{1}x.
cpx_{1}=-5x^{2}+4+\frac{1}{x}
Reorder the terms.
cpx_{1}x=-5x^{2}x+x\times 4+1
Multiply both sides of the equation by x.
cpx_{1}x=-5x^{3}+x\times 4+1
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
cxx_{1}p=1+4x-5x^{3}
The equation is in standard form.
\frac{cxx_{1}p}{cxx_{1}}=\frac{1+4x-5x^{3}}{cxx_{1}}
Divide both sides by cx_{1}x.
p=\frac{1+4x-5x^{3}}{cxx_{1}}
Dividing by cx_{1}x undoes the multiplication by cx_{1}x.
cpx_{1}=-5x^{2}+4+\frac{1}{x}
Reorder the terms.
cpx_{1}x=-5x^{2}x+x\times 4+1
Multiply both sides of the equation by x.
cpx_{1}x=-5x^{3}+x\times 4+1
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
pxx_{1}c=1+4x-5x^{3}
The equation is in standard form.
\frac{pxx_{1}c}{pxx_{1}}=\frac{1+4x-5x^{3}}{pxx_{1}}
Divide both sides by px_{1}x.
c=\frac{1+4x-5x^{3}}{pxx_{1}}
Dividing by px_{1}x undoes the multiplication by px_{1}x.
cpx_{1}=-5x^{2}+4+\frac{1}{x}
Reorder the terms.
cpx_{1}x=-5x^{2}x+x\times 4+1
Multiply both sides of the equation by x.
cpx_{1}x=-5x^{3}+x\times 4+1
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
cxx_{1}p=1+4x-5x^{3}
The equation is in standard form.
\frac{cxx_{1}p}{cxx_{1}}=\frac{1+4x-5x^{3}}{cxx_{1}}
Divide both sides by cx_{1}x.
p=\frac{1+4x-5x^{3}}{cxx_{1}}
Dividing by cx_{1}x undoes the multiplication by cx_{1}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}