Solve for p_1
p_{1}=-\frac{y\left(x^{2}-24\right)}{4}
y\neq 0
Solve for x (complex solution)
x=-2\sqrt{-\frac{p_{1}}{y}+6}
x=2\sqrt{-\frac{p_{1}}{y}+6}\text{, }y\neq 0
Solve for x
x=2\sqrt{-\frac{p_{1}}{y}+6}
x=-2\sqrt{-\frac{p_{1}}{y}+6}\text{, }\left(y>0\text{ or }p_{1}\geq 6y\right)\text{ and }\left(y<0\text{ or }p_{1}\leq 6y\right)\text{ and }y\neq 0
Graph
Share
Copied to clipboard
4p_{1}=-\frac{1}{4}x^{2}\times 4y+4y\times 6
Multiply both sides of the equation by 4y, the least common multiple of y,4.
4p_{1}=-x^{2}y+4y\times 6
Multiply -\frac{1}{4} and 4 to get -1.
4p_{1}=-x^{2}y+24y
Multiply 4 and 6 to get 24.
4p_{1}=24y-yx^{2}
The equation is in standard form.
\frac{4p_{1}}{4}=\frac{y\left(24-x^{2}\right)}{4}
Divide both sides by 4.
p_{1}=\frac{y\left(24-x^{2}\right)}{4}
Dividing by 4 undoes the multiplication by 4.
p_{1}=-\frac{yx^{2}}{4}+6y
Divide y\left(-x^{2}+24\right) by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}