Solve for p
p=49
Share
Copied to clipboard
-4\sqrt{p}=21-p
Subtract p from both sides of the equation.
\left(-4\sqrt{p}\right)^{2}=\left(21-p\right)^{2}
Square both sides of the equation.
\left(-4\right)^{2}\left(\sqrt{p}\right)^{2}=\left(21-p\right)^{2}
Expand \left(-4\sqrt{p}\right)^{2}.
16\left(\sqrt{p}\right)^{2}=\left(21-p\right)^{2}
Calculate -4 to the power of 2 and get 16.
16p=\left(21-p\right)^{2}
Calculate \sqrt{p} to the power of 2 and get p.
16p=441-42p+p^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(21-p\right)^{2}.
16p-441=-42p+p^{2}
Subtract 441 from both sides.
16p-441+42p=p^{2}
Add 42p to both sides.
58p-441=p^{2}
Combine 16p and 42p to get 58p.
58p-441-p^{2}=0
Subtract p^{2} from both sides.
-p^{2}+58p-441=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=58 ab=-\left(-441\right)=441
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -p^{2}+ap+bp-441. To find a and b, set up a system to be solved.
1,441 3,147 7,63 9,49 21,21
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 441.
1+441=442 3+147=150 7+63=70 9+49=58 21+21=42
Calculate the sum for each pair.
a=49 b=9
The solution is the pair that gives sum 58.
\left(-p^{2}+49p\right)+\left(9p-441\right)
Rewrite -p^{2}+58p-441 as \left(-p^{2}+49p\right)+\left(9p-441\right).
-p\left(p-49\right)+9\left(p-49\right)
Factor out -p in the first and 9 in the second group.
\left(p-49\right)\left(-p+9\right)
Factor out common term p-49 by using distributive property.
p=49 p=9
To find equation solutions, solve p-49=0 and -p+9=0.
49-4\sqrt{49}=21
Substitute 49 for p in the equation p-4\sqrt{p}=21.
21=21
Simplify. The value p=49 satisfies the equation.
9-4\sqrt{9}=21
Substitute 9 for p in the equation p-4\sqrt{p}=21.
-3=21
Simplify. The value p=9 does not satisfy the equation because the left and the right hand side have opposite signs.
p=49
Equation -4\sqrt{p}=21-p has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}