Solve for p
p=7
Share
Copied to clipboard
\left(p-1\right)^{2}=\left(\sqrt{50-2p}\right)^{2}
Square both sides of the equation.
p^{2}-2p+1=\left(\sqrt{50-2p}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(p-1\right)^{2}.
p^{2}-2p+1=50-2p
Calculate \sqrt{50-2p} to the power of 2 and get 50-2p.
p^{2}-2p+1-50=-2p
Subtract 50 from both sides.
p^{2}-2p-49=-2p
Subtract 50 from 1 to get -49.
p^{2}-2p-49+2p=0
Add 2p to both sides.
p^{2}-49=0
Combine -2p and 2p to get 0.
\left(p-7\right)\left(p+7\right)=0
Consider p^{2}-49. Rewrite p^{2}-49 as p^{2}-7^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
p=7 p=-7
To find equation solutions, solve p-7=0 and p+7=0.
7-1=\sqrt{50-2\times 7}
Substitute 7 for p in the equation p-1=\sqrt{50-2p}.
6=6
Simplify. The value p=7 satisfies the equation.
-7-1=\sqrt{50-2\left(-7\right)}
Substitute -7 for p in the equation p-1=\sqrt{50-2p}.
-8=8
Simplify. The value p=-7 does not satisfy the equation because the left and the right hand side have opposite signs.
p=7
Equation p-1=\sqrt{50-2p} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}