Solve for p
p=s+\frac{q}{r}
r\neq 0
Solve for q
q=r\left(p-s\right)
r\neq 0
Share
Copied to clipboard
rp-q=sr
Multiply both sides of the equation by r.
rp=sr+q
Add q to both sides.
rp=q+rs
The equation is in standard form.
\frac{rp}{r}=\frac{q+rs}{r}
Divide both sides by r.
p=\frac{q+rs}{r}
Dividing by r undoes the multiplication by r.
p=s+\frac{q}{r}
Divide q+rs by r.
rp-q=sr
Multiply both sides of the equation by r.
-q=sr-rp
Subtract rp from both sides.
-q=rs-pr
The equation is in standard form.
\frac{-q}{-1}=\frac{r\left(s-p\right)}{-1}
Divide both sides by -1.
q=\frac{r\left(s-p\right)}{-1}
Dividing by -1 undoes the multiplication by -1.
q=pr-rs
Divide r\left(s-p\right) by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}