Solve for p
p = \frac{\sqrt{233} + 11}{2} \approx 13.132168761
p=\frac{11-\sqrt{233}}{2}\approx -2.132168761
Share
Copied to clipboard
\left(p+2\right)p-2=13\left(p+2\right)
Variable p cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by p+2.
p^{2}+2p-2=13\left(p+2\right)
Use the distributive property to multiply p+2 by p.
p^{2}+2p-2=13p+26
Use the distributive property to multiply 13 by p+2.
p^{2}+2p-2-13p=26
Subtract 13p from both sides.
p^{2}-11p-2=26
Combine 2p and -13p to get -11p.
p^{2}-11p-2-26=0
Subtract 26 from both sides.
p^{2}-11p-28=0
Subtract 26 from -2 to get -28.
p=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-28\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -11 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-11\right)±\sqrt{121-4\left(-28\right)}}{2}
Square -11.
p=\frac{-\left(-11\right)±\sqrt{121+112}}{2}
Multiply -4 times -28.
p=\frac{-\left(-11\right)±\sqrt{233}}{2}
Add 121 to 112.
p=\frac{11±\sqrt{233}}{2}
The opposite of -11 is 11.
p=\frac{\sqrt{233}+11}{2}
Now solve the equation p=\frac{11±\sqrt{233}}{2} when ± is plus. Add 11 to \sqrt{233}.
p=\frac{11-\sqrt{233}}{2}
Now solve the equation p=\frac{11±\sqrt{233}}{2} when ± is minus. Subtract \sqrt{233} from 11.
p=\frac{\sqrt{233}+11}{2} p=\frac{11-\sqrt{233}}{2}
The equation is now solved.
\left(p+2\right)p-2=13\left(p+2\right)
Variable p cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by p+2.
p^{2}+2p-2=13\left(p+2\right)
Use the distributive property to multiply p+2 by p.
p^{2}+2p-2=13p+26
Use the distributive property to multiply 13 by p+2.
p^{2}+2p-2-13p=26
Subtract 13p from both sides.
p^{2}-11p-2=26
Combine 2p and -13p to get -11p.
p^{2}-11p=26+2
Add 2 to both sides.
p^{2}-11p=28
Add 26 and 2 to get 28.
p^{2}-11p+\left(-\frac{11}{2}\right)^{2}=28+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-11p+\frac{121}{4}=28+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
p^{2}-11p+\frac{121}{4}=\frac{233}{4}
Add 28 to \frac{121}{4}.
\left(p-\frac{11}{2}\right)^{2}=\frac{233}{4}
Factor p^{2}-11p+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{11}{2}\right)^{2}}=\sqrt{\frac{233}{4}}
Take the square root of both sides of the equation.
p-\frac{11}{2}=\frac{\sqrt{233}}{2} p-\frac{11}{2}=-\frac{\sqrt{233}}{2}
Simplify.
p=\frac{\sqrt{233}+11}{2} p=\frac{11-\sqrt{233}}{2}
Add \frac{11}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}