Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{px^{4}}{x^{4}+5x^{2}+4}x
Express p\times \frac{x^{4}}{x^{4}+5x^{2}+4} as a single fraction.
\frac{px^{4}x}{x^{4}+5x^{2}+4}
Express \frac{px^{4}}{x^{4}+5x^{2}+4}x as a single fraction.
\frac{px^{5}}{x^{4}+5x^{2}+4}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{px^{4}}{x^{4}+5x^{2}+4}x)
Express p\times \frac{x^{4}}{x^{4}+5x^{2}+4} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{px^{4}x}{x^{4}+5x^{2}+4})
Express \frac{px^{4}}{x^{4}+5x^{2}+4}x as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{px^{5}}{x^{4}+5x^{2}+4})
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
\frac{\left(x^{4}+5x^{2}+4\right)\frac{\mathrm{d}}{\mathrm{d}x}(px^{5})-px^{5}\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+5x^{2}+4)}{\left(x^{4}+5x^{2}+4\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(x^{4}+5x^{2}+4\right)\times 5px^{5-1}-px^{5}\left(4x^{4-1}+2\times 5x^{2-1}\right)}{\left(x^{4}+5x^{2}+4\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(x^{4}+5x^{2}+4\right)\times 5px^{4}-px^{5}\left(4x^{3}+10x^{1}\right)}{\left(x^{4}+5x^{2}+4\right)^{2}}
Simplify.
\frac{x^{4}\times 5px^{4}+5x^{2}\times 5px^{4}+4\times 5px^{4}-px^{5}\left(4x^{3}+10x^{1}\right)}{\left(x^{4}+5x^{2}+4\right)^{2}}
Multiply x^{4}+5x^{2}+4 times 5px^{4}.
\frac{x^{4}\times 5px^{4}+5x^{2}\times 5px^{4}+4\times 5px^{4}-\left(px^{5}\times 4x^{3}+px^{5}\times 10x^{1}\right)}{\left(x^{4}+5x^{2}+4\right)^{2}}
Multiply px^{5} times 4x^{3}+10x^{1}.
\frac{5px^{4+4}+5\times 5px^{2+4}+4\times 5px^{4}-\left(p\times 4x^{5+3}+p\times 10x^{5+1}\right)}{\left(x^{4}+5x^{2}+4\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{5px^{8}+25px^{6}+20px^{4}-\left(4px^{8}+10px^{6}\right)}{\left(x^{4}+5x^{2}+4\right)^{2}}
Simplify.
\frac{px^{8}+15px^{6}+20px^{4}}{\left(x^{4}+5x^{2}+4\right)^{2}}
Combine like terms.