Solve for p
\left\{\begin{matrix}p=-\frac{56x^{35}-xx_{100}-x-6}{x\left(x+1\right)}\text{, }&x\neq -1\text{ and }x\neq 0\\p\in \mathrm{R}\text{, }&x=-1\text{ and }x_{100}=61\end{matrix}\right.
Graph
Share
Copied to clipboard
px+1pxx=xx_{100}-56x^{34}x+6+x
Multiply both sides of the equation by x.
px+1px^{2}=xx_{100}-56x^{34}x+6+x
Multiply x and x to get x^{2}.
px+1px^{2}=xx_{100}-56x^{35}+6+x
To multiply powers of the same base, add their exponents. Add 34 and 1 to get 35.
px^{2}+px=-56x^{35}+xx_{100}+x+6
Reorder the terms.
\left(x^{2}+x\right)p=-56x^{35}+xx_{100}+x+6
Combine all terms containing p.
\left(x^{2}+x\right)p=6+x+xx_{100}-56x^{35}
The equation is in standard form.
\frac{\left(x^{2}+x\right)p}{x^{2}+x}=\frac{6+x+xx_{100}-56x^{35}}{x^{2}+x}
Divide both sides by x+x^{2}.
p=\frac{6+x+xx_{100}-56x^{35}}{x^{2}+x}
Dividing by x+x^{2} undoes the multiplication by x+x^{2}.
p=\frac{6+x+xx_{100}-56x^{35}}{x\left(x+1\right)}
Divide -56x^{35}+xx_{100}+x+6 by x+x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}