Solve for p
p=3
Share
Copied to clipboard
p\left(p^{2}-6p+9\right)-\left(p-3\right)^{3}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(p-3\right)^{2}.
p^{3}-6p^{2}+9p-\left(p-3\right)^{3}=0
Use the distributive property to multiply p by p^{2}-6p+9.
p^{3}-6p^{2}+9p-\left(p^{3}-9p^{2}+27p-27\right)=0
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(p-3\right)^{3}.
p^{3}-6p^{2}+9p-p^{3}+9p^{2}-27p+27=0
To find the opposite of p^{3}-9p^{2}+27p-27, find the opposite of each term.
-6p^{2}+9p+9p^{2}-27p+27=0
Combine p^{3} and -p^{3} to get 0.
3p^{2}+9p-27p+27=0
Combine -6p^{2} and 9p^{2} to get 3p^{2}.
3p^{2}-18p+27=0
Combine 9p and -27p to get -18p.
p^{2}-6p+9=0
Divide both sides by 3.
a+b=-6 ab=1\times 9=9
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as p^{2}+ap+bp+9. To find a and b, set up a system to be solved.
-1,-9 -3,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 9.
-1-9=-10 -3-3=-6
Calculate the sum for each pair.
a=-3 b=-3
The solution is the pair that gives sum -6.
\left(p^{2}-3p\right)+\left(-3p+9\right)
Rewrite p^{2}-6p+9 as \left(p^{2}-3p\right)+\left(-3p+9\right).
p\left(p-3\right)-3\left(p-3\right)
Factor out p in the first and -3 in the second group.
\left(p-3\right)\left(p-3\right)
Factor out common term p-3 by using distributive property.
\left(p-3\right)^{2}
Rewrite as a binomial square.
p=3
To find equation solution, solve p-3=0.
p\left(p^{2}-6p+9\right)-\left(p-3\right)^{3}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(p-3\right)^{2}.
p^{3}-6p^{2}+9p-\left(p-3\right)^{3}=0
Use the distributive property to multiply p by p^{2}-6p+9.
p^{3}-6p^{2}+9p-\left(p^{3}-9p^{2}+27p-27\right)=0
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(p-3\right)^{3}.
p^{3}-6p^{2}+9p-p^{3}+9p^{2}-27p+27=0
To find the opposite of p^{3}-9p^{2}+27p-27, find the opposite of each term.
-6p^{2}+9p+9p^{2}-27p+27=0
Combine p^{3} and -p^{3} to get 0.
3p^{2}+9p-27p+27=0
Combine -6p^{2} and 9p^{2} to get 3p^{2}.
3p^{2}-18p+27=0
Combine 9p and -27p to get -18p.
p=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 3\times 27}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -18 for b, and 27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-18\right)±\sqrt{324-4\times 3\times 27}}{2\times 3}
Square -18.
p=\frac{-\left(-18\right)±\sqrt{324-12\times 27}}{2\times 3}
Multiply -4 times 3.
p=\frac{-\left(-18\right)±\sqrt{324-324}}{2\times 3}
Multiply -12 times 27.
p=\frac{-\left(-18\right)±\sqrt{0}}{2\times 3}
Add 324 to -324.
p=-\frac{-18}{2\times 3}
Take the square root of 0.
p=\frac{18}{2\times 3}
The opposite of -18 is 18.
p=\frac{18}{6}
Multiply 2 times 3.
p=3
Divide 18 by 6.
p\left(p^{2}-6p+9\right)-\left(p-3\right)^{3}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(p-3\right)^{2}.
p^{3}-6p^{2}+9p-\left(p-3\right)^{3}=0
Use the distributive property to multiply p by p^{2}-6p+9.
p^{3}-6p^{2}+9p-\left(p^{3}-9p^{2}+27p-27\right)=0
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(p-3\right)^{3}.
p^{3}-6p^{2}+9p-p^{3}+9p^{2}-27p+27=0
To find the opposite of p^{3}-9p^{2}+27p-27, find the opposite of each term.
-6p^{2}+9p+9p^{2}-27p+27=0
Combine p^{3} and -p^{3} to get 0.
3p^{2}+9p-27p+27=0
Combine -6p^{2} and 9p^{2} to get 3p^{2}.
3p^{2}-18p+27=0
Combine 9p and -27p to get -18p.
3p^{2}-18p=-27
Subtract 27 from both sides. Anything subtracted from zero gives its negation.
\frac{3p^{2}-18p}{3}=-\frac{27}{3}
Divide both sides by 3.
p^{2}+\left(-\frac{18}{3}\right)p=-\frac{27}{3}
Dividing by 3 undoes the multiplication by 3.
p^{2}-6p=-\frac{27}{3}
Divide -18 by 3.
p^{2}-6p=-9
Divide -27 by 3.
p^{2}-6p+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-6p+9=-9+9
Square -3.
p^{2}-6p+9=0
Add -9 to 9.
\left(p-3\right)^{2}=0
Factor p^{2}-6p+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-3\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
p-3=0 p-3=0
Simplify.
p=3 p=3
Add 3 to both sides of the equation.
p=3
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}