Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(p^{4}-16\right)\left(p^{4}+16\right)
Rewrite p^{8}-256 as \left(p^{4}\right)^{2}-16^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(p^{2}-4\right)\left(p^{2}+4\right)
Consider p^{4}-16. Rewrite p^{4}-16 as \left(p^{2}\right)^{2}-4^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(p-2\right)\left(p+2\right)
Consider p^{2}-4. Rewrite p^{2}-4 as p^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(p-2\right)\left(p+2\right)\left(p^{2}+4\right)\left(p^{4}+16\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: p^{2}+4,p^{4}+16.