Solve for x
x=-\frac{4-p^{2}}{p^{2}+p-1}
p\neq \frac{\sqrt{5}-1}{2}\text{ and }p\neq \frac{-\sqrt{5}-1}{2}
Solve for p (complex solution)
\left\{\begin{matrix}p=\frac{\sqrt{5x^{2}-20x+16}-x}{2\left(x-1\right)}\text{; }p=-\frac{\sqrt{5x^{2}-20x+16}+x}{2\left(x-1\right)}\text{, }&x\neq 1\\p=-3\text{, }&x=1\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=\frac{\sqrt{5x^{2}-20x+16}-x}{2\left(x-1\right)}\text{; }p=-\frac{\sqrt{5x^{2}-20x+16}+x}{2\left(x-1\right)}\text{, }&\left(x\neq 1\text{ and }x\leq -\frac{2\sqrt{5}}{5}+2\right)\text{ or }x\geq \frac{2\sqrt{5}}{5}+2\\p=-3\text{, }&x=1\end{matrix}\right.
Graph
Share
Copied to clipboard
p^{2}x+px+4-x=p^{2}
Subtract x from both sides.
p^{2}x+px-x=p^{2}-4
Subtract 4 from both sides.
\left(p^{2}+p-1\right)x=p^{2}-4
Combine all terms containing x.
\frac{\left(p^{2}+p-1\right)x}{p^{2}+p-1}=\frac{p^{2}-4}{p^{2}+p-1}
Divide both sides by p^{2}+p-1.
x=\frac{p^{2}-4}{p^{2}+p-1}
Dividing by p^{2}+p-1 undoes the multiplication by p^{2}+p-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}