Solve for p
p=\sqrt{142}+11\approx 22.916375288
p=11-\sqrt{142}\approx -0.916375288
Share
Copied to clipboard
p^{2}-22p=21
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p^{2}-22p-21=21-21
Subtract 21 from both sides of the equation.
p^{2}-22p-21=0
Subtracting 21 from itself leaves 0.
p=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\left(-21\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -22 for b, and -21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-22\right)±\sqrt{484-4\left(-21\right)}}{2}
Square -22.
p=\frac{-\left(-22\right)±\sqrt{484+84}}{2}
Multiply -4 times -21.
p=\frac{-\left(-22\right)±\sqrt{568}}{2}
Add 484 to 84.
p=\frac{-\left(-22\right)±2\sqrt{142}}{2}
Take the square root of 568.
p=\frac{22±2\sqrt{142}}{2}
The opposite of -22 is 22.
p=\frac{2\sqrt{142}+22}{2}
Now solve the equation p=\frac{22±2\sqrt{142}}{2} when ± is plus. Add 22 to 2\sqrt{142}.
p=\sqrt{142}+11
Divide 22+2\sqrt{142} by 2.
p=\frac{22-2\sqrt{142}}{2}
Now solve the equation p=\frac{22±2\sqrt{142}}{2} when ± is minus. Subtract 2\sqrt{142} from 22.
p=11-\sqrt{142}
Divide 22-2\sqrt{142} by 2.
p=\sqrt{142}+11 p=11-\sqrt{142}
The equation is now solved.
p^{2}-22p=21
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
p^{2}-22p+\left(-11\right)^{2}=21+\left(-11\right)^{2}
Divide -22, the coefficient of the x term, by 2 to get -11. Then add the square of -11 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-22p+121=21+121
Square -11.
p^{2}-22p+121=142
Add 21 to 121.
\left(p-11\right)^{2}=142
Factor p^{2}-22p+121. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-11\right)^{2}}=\sqrt{142}
Take the square root of both sides of the equation.
p-11=\sqrt{142} p-11=-\sqrt{142}
Simplify.
p=\sqrt{142}+11 p=11-\sqrt{142}
Add 11 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}