Solve for p
p=2\sqrt{2}-3\approx -0.171572875
p=-2\sqrt{2}-3\approx -5.828427125
Share
Copied to clipboard
p^{2}+6p=-1
Add 6p to both sides.
p^{2}+6p+1=0
Add 1 to both sides.
p=\frac{-6±\sqrt{6^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-6±\sqrt{36-4}}{2}
Square 6.
p=\frac{-6±\sqrt{32}}{2}
Add 36 to -4.
p=\frac{-6±4\sqrt{2}}{2}
Take the square root of 32.
p=\frac{4\sqrt{2}-6}{2}
Now solve the equation p=\frac{-6±4\sqrt{2}}{2} when ± is plus. Add -6 to 4\sqrt{2}.
p=2\sqrt{2}-3
Divide -6+4\sqrt{2} by 2.
p=\frac{-4\sqrt{2}-6}{2}
Now solve the equation p=\frac{-6±4\sqrt{2}}{2} when ± is minus. Subtract 4\sqrt{2} from -6.
p=-2\sqrt{2}-3
Divide -6-4\sqrt{2} by 2.
p=2\sqrt{2}-3 p=-2\sqrt{2}-3
The equation is now solved.
p^{2}+6p=-1
Add 6p to both sides.
p^{2}+6p+3^{2}=-1+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+6p+9=-1+9
Square 3.
p^{2}+6p+9=8
Add -1 to 9.
\left(p+3\right)^{2}=8
Factor p^{2}+6p+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+3\right)^{2}}=\sqrt{8}
Take the square root of both sides of the equation.
p+3=2\sqrt{2} p+3=-2\sqrt{2}
Simplify.
p=2\sqrt{2}-3 p=-2\sqrt{2}-3
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}