Skip to main content
Solve for p
Tick mark Image

Similar Problems from Web Search

Share

p^{2}+3p=18
Add 3p to both sides.
p^{2}+3p-18=0
Subtract 18 from both sides.
a+b=3 ab=-18
To solve the equation, factor p^{2}+3p-18 using formula p^{2}+\left(a+b\right)p+ab=\left(p+a\right)\left(p+b\right). To find a and b, set up a system to be solved.
-1,18 -2,9 -3,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -18.
-1+18=17 -2+9=7 -3+6=3
Calculate the sum for each pair.
a=-3 b=6
The solution is the pair that gives sum 3.
\left(p-3\right)\left(p+6\right)
Rewrite factored expression \left(p+a\right)\left(p+b\right) using the obtained values.
p=3 p=-6
To find equation solutions, solve p-3=0 and p+6=0.
p^{2}+3p=18
Add 3p to both sides.
p^{2}+3p-18=0
Subtract 18 from both sides.
a+b=3 ab=1\left(-18\right)=-18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as p^{2}+ap+bp-18. To find a and b, set up a system to be solved.
-1,18 -2,9 -3,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -18.
-1+18=17 -2+9=7 -3+6=3
Calculate the sum for each pair.
a=-3 b=6
The solution is the pair that gives sum 3.
\left(p^{2}-3p\right)+\left(6p-18\right)
Rewrite p^{2}+3p-18 as \left(p^{2}-3p\right)+\left(6p-18\right).
p\left(p-3\right)+6\left(p-3\right)
Factor out p in the first and 6 in the second group.
\left(p-3\right)\left(p+6\right)
Factor out common term p-3 by using distributive property.
p=3 p=-6
To find equation solutions, solve p-3=0 and p+6=0.
p^{2}+3p=18
Add 3p to both sides.
p^{2}+3p-18=0
Subtract 18 from both sides.
p=\frac{-3±\sqrt{3^{2}-4\left(-18\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-3±\sqrt{9-4\left(-18\right)}}{2}
Square 3.
p=\frac{-3±\sqrt{9+72}}{2}
Multiply -4 times -18.
p=\frac{-3±\sqrt{81}}{2}
Add 9 to 72.
p=\frac{-3±9}{2}
Take the square root of 81.
p=\frac{6}{2}
Now solve the equation p=\frac{-3±9}{2} when ± is plus. Add -3 to 9.
p=3
Divide 6 by 2.
p=-\frac{12}{2}
Now solve the equation p=\frac{-3±9}{2} when ± is minus. Subtract 9 from -3.
p=-6
Divide -12 by 2.
p=3 p=-6
The equation is now solved.
p^{2}+3p=18
Add 3p to both sides.
p^{2}+3p+\left(\frac{3}{2}\right)^{2}=18+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+3p+\frac{9}{4}=18+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
p^{2}+3p+\frac{9}{4}=\frac{81}{4}
Add 18 to \frac{9}{4}.
\left(p+\frac{3}{2}\right)^{2}=\frac{81}{4}
Factor p^{2}+3p+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+\frac{3}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
p+\frac{3}{2}=\frac{9}{2} p+\frac{3}{2}=-\frac{9}{2}
Simplify.
p=3 p=-6
Subtract \frac{3}{2} from both sides of the equation.