Skip to main content
Solve for p
Tick mark Image

Similar Problems from Web Search

Share

p\left(p+20\right)=0
Factor out p.
p=0 p=-20
To find equation solutions, solve p=0 and p+20=0.
p^{2}+20p=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-20±\sqrt{20^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 20 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-20±20}{2}
Take the square root of 20^{2}.
p=\frac{0}{2}
Now solve the equation p=\frac{-20±20}{2} when ± is plus. Add -20 to 20.
p=0
Divide 0 by 2.
p=-\frac{40}{2}
Now solve the equation p=\frac{-20±20}{2} when ± is minus. Subtract 20 from -20.
p=-20
Divide -40 by 2.
p=0 p=-20
The equation is now solved.
p^{2}+20p=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
p^{2}+20p+10^{2}=10^{2}
Divide 20, the coefficient of the x term, by 2 to get 10. Then add the square of 10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+20p+100=100
Square 10.
\left(p+10\right)^{2}=100
Factor p^{2}+20p+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+10\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
p+10=10 p+10=-10
Simplify.
p=0 p=-20
Subtract 10 from both sides of the equation.