Solve for p
p=3
p=4
Share
Copied to clipboard
p^{2}+625-350p+49p^{2}=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(25-7p\right)^{2}.
50p^{2}+625-350p=25
Combine p^{2} and 49p^{2} to get 50p^{2}.
50p^{2}+625-350p-25=0
Subtract 25 from both sides.
50p^{2}+600-350p=0
Subtract 25 from 625 to get 600.
50p^{2}-350p+600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-350\right)±\sqrt{\left(-350\right)^{2}-4\times 50\times 600}}{2\times 50}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 50 for a, -350 for b, and 600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-350\right)±\sqrt{122500-4\times 50\times 600}}{2\times 50}
Square -350.
p=\frac{-\left(-350\right)±\sqrt{122500-200\times 600}}{2\times 50}
Multiply -4 times 50.
p=\frac{-\left(-350\right)±\sqrt{122500-120000}}{2\times 50}
Multiply -200 times 600.
p=\frac{-\left(-350\right)±\sqrt{2500}}{2\times 50}
Add 122500 to -120000.
p=\frac{-\left(-350\right)±50}{2\times 50}
Take the square root of 2500.
p=\frac{350±50}{2\times 50}
The opposite of -350 is 350.
p=\frac{350±50}{100}
Multiply 2 times 50.
p=\frac{400}{100}
Now solve the equation p=\frac{350±50}{100} when ± is plus. Add 350 to 50.
p=4
Divide 400 by 100.
p=\frac{300}{100}
Now solve the equation p=\frac{350±50}{100} when ± is minus. Subtract 50 from 350.
p=3
Divide 300 by 100.
p=4 p=3
The equation is now solved.
p^{2}+625-350p+49p^{2}=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(25-7p\right)^{2}.
50p^{2}+625-350p=25
Combine p^{2} and 49p^{2} to get 50p^{2}.
50p^{2}-350p=25-625
Subtract 625 from both sides.
50p^{2}-350p=-600
Subtract 625 from 25 to get -600.
\frac{50p^{2}-350p}{50}=-\frac{600}{50}
Divide both sides by 50.
p^{2}+\left(-\frac{350}{50}\right)p=-\frac{600}{50}
Dividing by 50 undoes the multiplication by 50.
p^{2}-7p=-\frac{600}{50}
Divide -350 by 50.
p^{2}-7p=-12
Divide -600 by 50.
p^{2}-7p+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-7p+\frac{49}{4}=-12+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
p^{2}-7p+\frac{49}{4}=\frac{1}{4}
Add -12 to \frac{49}{4}.
\left(p-\frac{7}{2}\right)^{2}=\frac{1}{4}
Factor p^{2}-7p+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
p-\frac{7}{2}=\frac{1}{2} p-\frac{7}{2}=-\frac{1}{2}
Simplify.
p=4 p=3
Add \frac{7}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}