Solve for h (complex solution)
\left\{\begin{matrix}h=-\frac{p}{8x}-\frac{1}{2}\text{, }&x\neq 0\\h\in \mathrm{C}\text{, }&p=0\text{ and }x=0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=-\frac{p}{8x}-\frac{1}{2}\text{, }&x\neq 0\\h\in \mathrm{R}\text{, }&p=0\text{ and }x=0\end{matrix}\right.
Solve for p
p=4x\left(-2h-1\right)
Graph
Share
Copied to clipboard
p=x\left(0-\left(4+8h\right)\right)
Multiply 2 and 0 to get 0.
p=x\left(0-4-8h\right)
To find the opposite of 4+8h, find the opposite of each term.
p=x\left(-4-8h\right)
Subtract 4 from 0 to get -4.
p=-4x-8xh
Use the distributive property to multiply x by -4-8h.
-4x-8xh=p
Swap sides so that all variable terms are on the left hand side.
-8xh=p+4x
Add 4x to both sides.
\left(-8x\right)h=4x+p
The equation is in standard form.
\frac{\left(-8x\right)h}{-8x}=\frac{4x+p}{-8x}
Divide both sides by -8x.
h=\frac{4x+p}{-8x}
Dividing by -8x undoes the multiplication by -8x.
h=-\frac{p}{8x}-\frac{1}{2}
Divide 4x+p by -8x.
p=x\left(0-\left(4+8h\right)\right)
Multiply 2 and 0 to get 0.
p=x\left(0-4-8h\right)
To find the opposite of 4+8h, find the opposite of each term.
p=x\left(-4-8h\right)
Subtract 4 from 0 to get -4.
p=-4x-8xh
Use the distributive property to multiply x by -4-8h.
-4x-8xh=p
Swap sides so that all variable terms are on the left hand side.
-8xh=p+4x
Add 4x to both sides.
\left(-8x\right)h=4x+p
The equation is in standard form.
\frac{\left(-8x\right)h}{-8x}=\frac{4x+p}{-8x}
Divide both sides by -8x.
h=\frac{4x+p}{-8x}
Dividing by -8x undoes the multiplication by -8x.
h=-\frac{p}{8x}-\frac{1}{2}
Divide 4x+p by -8x.
p=x\left(0-\left(4+8h\right)\right)
Multiply 2 and 0 to get 0.
p=x\left(0-4-8h\right)
To find the opposite of 4+8h, find the opposite of each term.
p=x\left(-4-8h\right)
Subtract 4 from 0 to get -4.
p=-4x-8xh
Use the distributive property to multiply x by -4-8h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}