Solve for p (complex solution)
\left\{\begin{matrix}p=-\frac{2\left(3-2q\right)}{1-4s}\text{, }&s\neq \frac{1}{4}\\p\in \mathrm{C}\text{, }&q=\frac{3}{2}\text{ and }s=\frac{1}{4}\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=-\frac{2\left(3-2q\right)}{1-4s}\text{, }&s\neq \frac{1}{4}\\p\in \mathrm{R}\text{, }&q=\frac{3}{2}\text{ and }s=\frac{1}{4}\end{matrix}\right.
Solve for q
q=\frac{6+p-4ps}{4}
Share
Copied to clipboard
p-4ps=4q-6
Subtract 4ps from both sides.
\left(1-4s\right)p=4q-6
Combine all terms containing p.
\frac{\left(1-4s\right)p}{1-4s}=\frac{4q-6}{1-4s}
Divide both sides by -4s+1.
p=\frac{4q-6}{1-4s}
Dividing by -4s+1 undoes the multiplication by -4s+1.
p=\frac{2\left(2q-3\right)}{1-4s}
Divide 4q-6 by -4s+1.
p-4ps=4q-6
Subtract 4ps from both sides.
\left(1-4s\right)p=4q-6
Combine all terms containing p.
\frac{\left(1-4s\right)p}{1-4s}=\frac{4q-6}{1-4s}
Divide both sides by -4s+1.
p=\frac{4q-6}{1-4s}
Dividing by -4s+1 undoes the multiplication by -4s+1.
p=\frac{2\left(2q-3\right)}{1-4s}
Divide 4q-6 by -4s+1.
4ps+4q-6=p
Swap sides so that all variable terms are on the left hand side.
4q-6=p-4ps
Subtract 4ps from both sides.
4q=p-4ps+6
Add 6 to both sides.
4q=6+p-4ps
The equation is in standard form.
\frac{4q}{4}=\frac{6+p-4ps}{4}
Divide both sides by 4.
q=\frac{6+p-4ps}{4}
Dividing by 4 undoes the multiplication by 4.
q=-ps+\frac{p}{4}+\frac{3}{2}
Divide p-4ps+6 by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}