Solve for p
p=1-15x
Solve for x
x=\frac{1-p}{15}
Graph
Share
Copied to clipboard
p=9x^{2}+6x+1-3x\left(3x+7\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-3x-1\right)^{2}.
p=9x^{2}+6x+1-9x^{2}-21x
Use the distributive property to multiply -3x by 3x+7.
p=6x+1-21x
Combine 9x^{2} and -9x^{2} to get 0.
p=-15x+1
Combine 6x and -21x to get -15x.
p=9x^{2}+6x+1-3x\left(3x+7\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-3x-1\right)^{2}.
9x^{2}+6x+1-3x\left(3x+7\right)=p
Swap sides so that all variable terms are on the left hand side.
9x^{2}+6x+1-9x^{2}-21x=p
Use the distributive property to multiply -3x by 3x+7.
6x+1-21x=p
Combine 9x^{2} and -9x^{2} to get 0.
-15x+1=p
Combine 6x and -21x to get -15x.
-15x=p-1
Subtract 1 from both sides.
\frac{-15x}{-15}=\frac{p-1}{-15}
Divide both sides by -15.
x=\frac{p-1}{-15}
Dividing by -15 undoes the multiplication by -15.
x=\frac{1-p}{15}
Divide p-1 by -15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}