Solve for K
\left\{\begin{matrix}K=\frac{4p^{2}T^{4}}{3M}\text{, }&p\geq 0\text{ and }T\neq 0\text{ and }M\neq 0\\K\in \mathrm{R}\text{, }&M=0\text{ and }T\neq 0\text{ and }p=0\end{matrix}\right.
Solve for M
\left\{\begin{matrix}M=\frac{4p^{2}T^{4}}{3K}\text{, }&p\geq 0\text{ and }T\neq 0\text{ and }K\neq 0\\M\in \mathrm{R}\text{, }&K=0\text{ and }T\neq 0\text{ and }p=0\end{matrix}\right.
Share
Copied to clipboard
p\times 2T^{2}=\sqrt{3MK}
Multiply both sides of the equation by 2T^{2}.
\sqrt{3MK}=p\times 2T^{2}
Swap sides so that all variable terms are on the left hand side.
3MK=4p^{2}T^{4}
Square both sides of the equation.
\frac{3MK}{3M}=\frac{4p^{2}T^{4}}{3M}
Divide both sides by 3M.
K=\frac{4p^{2}T^{4}}{3M}
Dividing by 3M undoes the multiplication by 3M.
p\times 2T^{2}=\sqrt{3MK}
Multiply both sides of the equation by 2T^{2}.
\sqrt{3MK}=p\times 2T^{2}
Swap sides so that all variable terms are on the left hand side.
3KM=4p^{2}T^{4}
Square both sides of the equation.
\frac{3KM}{3K}=\frac{4p^{2}T^{4}}{3K}
Divide both sides by 3K.
M=\frac{4p^{2}T^{4}}{3K}
Dividing by 3K undoes the multiplication by 3K.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}