Solve for p
p=a
a\neq 0\text{ and }a\neq -4
Solve for a
a=p
p\neq 0\text{ and }p\neq -4
Share
Copied to clipboard
p=\frac{\frac{a}{3a}+\frac{4}{3a}}{\frac{1}{3a}+\frac{4}{3a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 3a is 3a. Multiply \frac{1}{3} times \frac{a}{a}.
p=\frac{\frac{a+4}{3a}}{\frac{1}{3a}+\frac{4}{3a^{2}}}
Since \frac{a}{3a} and \frac{4}{3a} have the same denominator, add them by adding their numerators.
p=\frac{\frac{a+4}{3a}}{\frac{a}{3a^{2}}+\frac{4}{3a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a and 3a^{2} is 3a^{2}. Multiply \frac{1}{3a} times \frac{a}{a}.
p=\frac{\frac{a+4}{3a}}{\frac{a+4}{3a^{2}}}
Since \frac{a}{3a^{2}} and \frac{4}{3a^{2}} have the same denominator, add them by adding their numerators.
p=\frac{\left(a+4\right)\times 3a^{2}}{3a\left(a+4\right)}
Divide \frac{a+4}{3a} by \frac{a+4}{3a^{2}} by multiplying \frac{a+4}{3a} by the reciprocal of \frac{a+4}{3a^{2}}.
p=a
Cancel out 3a\left(a+4\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}