Solve for p
p=-\frac{-129qr+31r-129}{31\left(qr+1\right)}
q\neq -\frac{1}{r}\text{ and }r\neq 0
Solve for q
q=-\frac{31p+31r-129}{r\left(31p-129\right)}
p\neq \frac{129}{31}\text{ and }r\neq 0
Share
Copied to clipboard
p+\frac{1}{\frac{qr}{r}+\frac{1}{r}}=\frac{129}{31}
To add or subtract expressions, expand them to make their denominators the same. Multiply q times \frac{r}{r}.
p+\frac{1}{\frac{qr+1}{r}}=\frac{129}{31}
Since \frac{qr}{r} and \frac{1}{r} have the same denominator, add them by adding their numerators.
p+\frac{r}{qr+1}=\frac{129}{31}
Divide 1 by \frac{qr+1}{r} by multiplying 1 by the reciprocal of \frac{qr+1}{r}.
\frac{p\left(qr+1\right)}{qr+1}+\frac{r}{qr+1}=\frac{129}{31}
To add or subtract expressions, expand them to make their denominators the same. Multiply p times \frac{qr+1}{qr+1}.
\frac{p\left(qr+1\right)+r}{qr+1}=\frac{129}{31}
Since \frac{p\left(qr+1\right)}{qr+1} and \frac{r}{qr+1} have the same denominator, add them by adding their numerators.
\frac{pqr+p+r}{qr+1}=\frac{129}{31}
Do the multiplications in p\left(qr+1\right)+r.
31\left(pqr+p+r\right)=129\left(qr+1\right)
Multiply both sides of the equation by 31\left(qr+1\right), the least common multiple of qr+1,31.
31pqr+31p+31r=129\left(qr+1\right)
Use the distributive property to multiply 31 by pqr+p+r.
31pqr+31p+31r=129qr+129
Use the distributive property to multiply 129 by qr+1.
31pqr+31p=129qr+129-31r
Subtract 31r from both sides.
\left(31qr+31\right)p=129qr+129-31r
Combine all terms containing p.
\left(31qr+31\right)p=129qr-31r+129
The equation is in standard form.
\frac{\left(31qr+31\right)p}{31qr+31}=\frac{129qr-31r+129}{31qr+31}
Divide both sides by 31qr+31.
p=\frac{129qr-31r+129}{31qr+31}
Dividing by 31qr+31 undoes the multiplication by 31qr+31.
p=\frac{129qr-31r+129}{31\left(qr+1\right)}
Divide 129qr+129-31r by 31qr+31.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}