Solve for P_4 (complex solution)
\left\{\begin{matrix}P_{4}=\frac{10x}{n}\text{, }&n\neq 0\\P_{4}\in \mathrm{C}\text{, }&x=0\text{ and }n=0\end{matrix}\right.
Solve for n (complex solution)
\left\{\begin{matrix}n=\frac{10x}{P_{4}}\text{, }&P_{4}\neq 0\\n\in \mathrm{C}\text{, }&x=0\text{ and }P_{4}=0\end{matrix}\right.
Solve for P_4
\left\{\begin{matrix}P_{4}=\frac{10x}{n}\text{, }&n\neq 0\\P_{4}\in \mathrm{R}\text{, }&x=0\text{ and }n=0\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=\frac{10x}{P_{4}}\text{, }&P_{4}\neq 0\\n\in \mathrm{R}\text{, }&x=0\text{ and }P_{4}=0\end{matrix}\right.
Graph
Share
Copied to clipboard
nP_{4}=10x
The equation is in standard form.
\frac{nP_{4}}{n}=\frac{10x}{n}
Divide both sides by n.
P_{4}=\frac{10x}{n}
Dividing by n undoes the multiplication by n.
P_{4}n=10x
The equation is in standard form.
\frac{P_{4}n}{P_{4}}=\frac{10x}{P_{4}}
Divide both sides by P_{4}.
n=\frac{10x}{P_{4}}
Dividing by P_{4} undoes the multiplication by P_{4}.
nP_{4}=10x
The equation is in standard form.
\frac{nP_{4}}{n}=\frac{10x}{n}
Divide both sides by n.
P_{4}=\frac{10x}{n}
Dividing by n undoes the multiplication by n.
P_{4}n=10x
The equation is in standard form.
\frac{P_{4}n}{P_{4}}=\frac{10x}{P_{4}}
Divide both sides by P_{4}.
n=\frac{10x}{P_{4}}
Dividing by P_{4} undoes the multiplication by P_{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}