Solve for n
n = \frac{9 {(\sqrt{11} + 6)}}{2} \approx 41.924811557
Share
Copied to clipboard
n-\left(\frac{n}{3}+15\right)=2\sqrt{n}
Subtract \frac{n}{3}+15 from both sides of the equation.
3n-3\left(\frac{n}{3}+15\right)=6\sqrt{n}
Multiply both sides of the equation by 3.
3n-3\times \frac{n}{3}-45=6\sqrt{n}
Use the distributive property to multiply -3 by \frac{n}{3}+15.
3n+\frac{-3n}{3}-45=6\sqrt{n}
Express -3\times \frac{n}{3} as a single fraction.
3n-n-45=6\sqrt{n}
Cancel out 3 and 3.
2n-45=6\sqrt{n}
Combine 3n and -n to get 2n.
\left(2n-45\right)^{2}=\left(6\sqrt{n}\right)^{2}
Square both sides of the equation.
4n^{2}-180n+2025=\left(6\sqrt{n}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2n-45\right)^{2}.
4n^{2}-180n+2025=6^{2}\left(\sqrt{n}\right)^{2}
Expand \left(6\sqrt{n}\right)^{2}.
4n^{2}-180n+2025=36\left(\sqrt{n}\right)^{2}
Calculate 6 to the power of 2 and get 36.
4n^{2}-180n+2025=36n
Calculate \sqrt{n} to the power of 2 and get n.
4n^{2}-180n+2025-36n=0
Subtract 36n from both sides.
4n^{2}-216n+2025=0
Combine -180n and -36n to get -216n.
n=\frac{-\left(-216\right)±\sqrt{\left(-216\right)^{2}-4\times 4\times 2025}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -216 for b, and 2025 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-216\right)±\sqrt{46656-4\times 4\times 2025}}{2\times 4}
Square -216.
n=\frac{-\left(-216\right)±\sqrt{46656-16\times 2025}}{2\times 4}
Multiply -4 times 4.
n=\frac{-\left(-216\right)±\sqrt{46656-32400}}{2\times 4}
Multiply -16 times 2025.
n=\frac{-\left(-216\right)±\sqrt{14256}}{2\times 4}
Add 46656 to -32400.
n=\frac{-\left(-216\right)±36\sqrt{11}}{2\times 4}
Take the square root of 14256.
n=\frac{216±36\sqrt{11}}{2\times 4}
The opposite of -216 is 216.
n=\frac{216±36\sqrt{11}}{8}
Multiply 2 times 4.
n=\frac{36\sqrt{11}+216}{8}
Now solve the equation n=\frac{216±36\sqrt{11}}{8} when ± is plus. Add 216 to 36\sqrt{11}.
n=\frac{9\sqrt{11}}{2}+27
Divide 216+36\sqrt{11} by 8.
n=\frac{216-36\sqrt{11}}{8}
Now solve the equation n=\frac{216±36\sqrt{11}}{8} when ± is minus. Subtract 36\sqrt{11} from 216.
n=-\frac{9\sqrt{11}}{2}+27
Divide 216-36\sqrt{11} by 8.
n=\frac{9\sqrt{11}}{2}+27 n=-\frac{9\sqrt{11}}{2}+27
The equation is now solved.
\frac{9\sqrt{11}}{2}+27=\frac{\frac{9\sqrt{11}}{2}+27}{3}+15+2\sqrt{\frac{9\sqrt{11}}{2}+27}
Substitute \frac{9\sqrt{11}}{2}+27 for n in the equation n=\frac{n}{3}+15+2\sqrt{n}.
\frac{9}{2}\times 11^{\frac{1}{2}}+27=\frac{9}{2}\times 11^{\frac{1}{2}}+27
Simplify. The value n=\frac{9\sqrt{11}}{2}+27 satisfies the equation.
-\frac{9\sqrt{11}}{2}+27=\frac{-\frac{9\sqrt{11}}{2}+27}{3}+15+2\sqrt{-\frac{9\sqrt{11}}{2}+27}
Substitute -\frac{9\sqrt{11}}{2}+27 for n in the equation n=\frac{n}{3}+15+2\sqrt{n}.
-\frac{9}{2}\times 11^{\frac{1}{2}}+27=\frac{3}{2}\times 11^{\frac{1}{2}}+21
Simplify. The value n=-\frac{9\sqrt{11}}{2}+27 does not satisfy the equation.
n=\frac{9\sqrt{11}}{2}+27
Equation 2n-45=6\sqrt{n} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}