Solve for n_e
n_{e}=\frac{5\left(\epsilon +1\right)}{3\left(\epsilon +10\right)}
\epsilon \neq -10\text{ and }\epsilon \neq -1
Solve for ε
\epsilon =-\frac{5\left(6n_{e}-1\right)}{3n_{e}-5}
n_{e}\neq 0\text{ and }n_{e}\neq \frac{5}{3}
Share
Copied to clipboard
n_{e}\times 30\left(\epsilon +1\right)+\left(300-30\right)n_{e}=50\left(\epsilon +1\right)
Multiply both sides of the equation by \epsilon +1.
30n_{e}\epsilon +n_{e}\times 30+\left(300-30\right)n_{e}=50\left(\epsilon +1\right)
Use the distributive property to multiply n_{e}\times 30 by \epsilon +1.
30n_{e}\epsilon +n_{e}\times 30+270n_{e}=50\left(\epsilon +1\right)
Subtract 30 from 300 to get 270.
30n_{e}\epsilon +300n_{e}=50\left(\epsilon +1\right)
Combine n_{e}\times 30 and 270n_{e} to get 300n_{e}.
30n_{e}\epsilon +300n_{e}=50\epsilon +50
Use the distributive property to multiply 50 by \epsilon +1.
\left(30\epsilon +300\right)n_{e}=50\epsilon +50
Combine all terms containing n_{e}.
\frac{\left(30\epsilon +300\right)n_{e}}{30\epsilon +300}=\frac{50\epsilon +50}{30\epsilon +300}
Divide both sides by 30\epsilon +300.
n_{e}=\frac{50\epsilon +50}{30\epsilon +300}
Dividing by 30\epsilon +300 undoes the multiplication by 30\epsilon +300.
n_{e}=\frac{5\left(\epsilon +1\right)}{3\left(\epsilon +10\right)}
Divide 50+50\epsilon by 30\epsilon +300.
n_{e}\times 30\left(\epsilon +1\right)+\left(300-30\right)n_{e}=50\left(\epsilon +1\right)
Variable \epsilon cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \epsilon +1.
30n_{e}\epsilon +n_{e}\times 30+\left(300-30\right)n_{e}=50\left(\epsilon +1\right)
Use the distributive property to multiply n_{e}\times 30 by \epsilon +1.
30n_{e}\epsilon +n_{e}\times 30+270n_{e}=50\left(\epsilon +1\right)
Subtract 30 from 300 to get 270.
30n_{e}\epsilon +300n_{e}=50\left(\epsilon +1\right)
Combine n_{e}\times 30 and 270n_{e} to get 300n_{e}.
30n_{e}\epsilon +300n_{e}=50\epsilon +50
Use the distributive property to multiply 50 by \epsilon +1.
30n_{e}\epsilon +300n_{e}-50\epsilon =50
Subtract 50\epsilon from both sides.
30n_{e}\epsilon -50\epsilon =50-300n_{e}
Subtract 300n_{e} from both sides.
\left(30n_{e}-50\right)\epsilon =50-300n_{e}
Combine all terms containing \epsilon .
\frac{\left(30n_{e}-50\right)\epsilon }{30n_{e}-50}=\frac{50-300n_{e}}{30n_{e}-50}
Divide both sides by 30n_{e}-50.
\epsilon =\frac{50-300n_{e}}{30n_{e}-50}
Dividing by 30n_{e}-50 undoes the multiplication by 30n_{e}-50.
\epsilon =\frac{5\left(1-6n_{e}\right)}{3n_{e}-5}
Divide 50-300n_{e} by 30n_{e}-50.
\epsilon =\frac{5\left(1-6n_{e}\right)}{3n_{e}-5}\text{, }\epsilon \neq -1
Variable \epsilon cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}